24 resultados para Nitazoxanide

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cationic arylimidamide DB750 and the thiazolide nitazoxanide had been shown earlier to be effective against Neospora caninum tachyzoites in vitro with an IC(50) of 160nM and 4.23muM, respectively. In this study, we have investigated the effects of DB750 and nitazoxanide treatments of experimentally infected Balb/c mice, by applying the drugs either through the oral or the intraperitoneal route. In experiment 1, administration of DB750 (2mg/kg/day) and nitazoxanide (150mg/kg/day) started already 3 days prior to experimental infection of mice with 2x10(6) tachyzoites. Following infection, the drugs were further administrated daily for a period of 2 weeks, either orally or intraperitoneally. Intraperitoneal injection of DB750 was well tolerated by the mice, but treatment with nitazoxanide resulted in death of all mice within 3 days. Upon intraperitoneal application of DB750, the cerebral parasite load was significantly reduced compared to all other groups, while oral application of DB750 and nitazoxanide were not as effective, and resulted in significant weight loss. In experiment 2, mice were infected with 2x10(6) tachyzoites and at 2 weeks post-infection, DB750 (2mg/kg/day) was applied by intraperitoneal injections for 14 days. In the DB750-treated group, only 2 out of 12 mice succumbed to infection, compared to 7 out of 12 mice in the placebo-group. DB750 treatment also resulted in significantly reduced cerebral parasite burden, and reduced numbers of viable tachyzoites. Our data suggest that DB750 exerted its activity also after crossing the blood-brain barrier, and that this class of compounds could be promising for the control of N. caninum-associated disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colonisation of the gastrointestinal tract by anaerobic bacteria, protozoa, trematodes, cestodes and/or nematodes and other infectious pathogens, including viruses, represents a major cause of morbidity and mortality in Africa, South America and southeast Asia, as well as other parts of the world. Nitazoxanide is a member of the thiazolide class of drugs with a documented broad spectrum of activity against parasites and anaerobic bacteria. Moreover, the drug has recently been reported to have a profound activity against hepatitis C virus infection. In addition, nitazoxanide exhibits anti-inflammatory properties, which have prompted clinical investigations for its use in Crohn's disease. Studies with nitazoxanide derivatives have determined that there must be significantly different mechanisms of action acting on intracellular versus extracellular pathogens. An impressive number of clinical studies have shown that the drug has an excellent bioavailability in the gastrointestinal tract, is fast acting and highly effective against gastrointestinal bacteria, protozoa and helminthes. A recent Phase II study has demonstrated viral response (hepatitis C) to monotherapy, with a low toxicity and an excellent safety profile over 24 weeks of treatment. Pre-clinical studies have indicated that there is a potential for application of this drug against other diseases, not primarily affecting the liver or the gastrointestinal tract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitazoxanide (NTZ) and several NTZ-derivatives (thiazolides) have been shown to exhibit considerable anti-Neospora caninum tachyzoite activity in vitro. We coupled tizoxanide (TIZ), the deacetylated metabolite, to epoxy-agarose-resin and performed affinity chromatography with N. caninum tachyzoite extracts. Two main protein bands of 52 and 43kDa were isolated. The 52kDa protein was readily recognized by antibodies directed against NcPDI, and mass spectrometry confirmed its identity. Poly-histidine-tagged NcPDI-cDNA was expressed in Escherichia coli and recombinant NcPDI (recNcPDI) was purified by Co2+-affinity chromatography. By applying an enzyme assay based on the measurement of insulin crosslinking activity, recNcPDI exhibited properties reminiscent for PDIs, and its activity was impaired upon the addition of classical PDI inhibitors such as bacitracin (1-2mM), para-chloromercuribenzoic acid (0.1-1mM) and tocinoic acid (0.1-1mM). RecNcPDI-mediated insulin crosslinking was inhibited by NTZ (5-100 microM) in a dose-dependent manner. In addition, the enzymatic activity of recNcPDI was inhibited by those thiazolides that also affected parasite proliferation. Thus, thiazolides readily interfere with NcPDI, and possibly also with PDIs from other microorganisms susceptible to thiazolides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The characterization of Giardia lamblia WB C6 strains resistant to metronidazole and to the nitro-thiazole nitazoxanide [2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide] as the parent compound of thiazolides, a novel class of anti-infective drugs with a broad spectrum of activities against a wide variety of helminths, protozoa and enteric bacteria. METHODS: Issuing from G. lamblia WB C6, we have generated two strains exhibiting resistance to nitazoxanide (strain C4) and to metronidazole (strain C5) and determined their susceptibilities to both drugs. Using quantitative RT-PCR, we have analysed the expression of genes that are potentially involved in resistance formation, namely genes encoding pyruvate oxidoreductases (POR1 and POR2), nitroreductase (NR), protein disulphide isomerases (PDI2 and PDI4) and variant surface proteins (VSPs; TSA417). We have cloned and expressed PDI2 and PDI4 in Escherichia coli. Using an enzyme assay based on the polymerization of insulin, we have determined the activities of both enzymes in the presence and absence of nitazoxanide. RESULTS: Whereas C4 was cross-resistant to nitazoxanide and to metronidazole, C5 was resistant only to metronidazole. Transcript levels of the potential targets for nitro-drugs POR1, POR2 and NR were only slightly modified, PDI2 transcript levels were increased in both resistant strains and PDI4 levels in C4. This correlated with the findings that the functional activities of recombinant PDI2 and PDI4 were inhibited by nitazoxanide. Moreover, drastic changes were observed in VSP gene expression. CONCLUSIONS: These results suggest that resistance formation in Giardia against nitazoxanide and metronidazole is linked, and possibly mediated by, altered gene expression in drug-resistant strains compared with non-resistant strains of Giardia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nitrothiazole analogue nitazoxanide [NTZ; 2-acetolyloxy-N-(5-nitro-2-thiazolyl)benzamide] represents the parent compound of a class of drugs referred to as thiazolides and exhibits a broad spectrum of activities against a wide variety of helminths, protozoa, and enteric bacteria infecting animals and humans. NTZ and other thiazolides are active against a wide range of other intracellular and extracellular protozoan parasites in vitro and in vivo, but their mode of action and respective subcellular target(s) have only recently been investigated. In order to identify potential targets of NTZ and other thiazolides in Giardia lamblia trophozoites, we have developed an affinity chromatography system using the deacetylated derivative of NTZ, tizoxanide (TIZ), as a ligand. Affinity chromatography on TIZ-agarose using cell extracts of G. lamblia trophozoites resulted in the isolation of an approximately 35-kDa polypeptide, which was identified by mass spectrometry as a nitroreductase (NR) homologue (EAA43030.1). NR was overexpressed as a six-histidine-tagged recombinant protein in Escherichia coli, purified, and then characterized using an assay for oxygen-insensitive NRs with dinitrotoluene as a substrate. This demonstrated that the NR was functionally active, and the protein was designated GlNR1. In this assay system, NR activity was severely inhibited by NTZ and other thiazolides, demonstrating that the antigiardial activity of these drugs could be, at least partially, mediated through inhibition of GlNR1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diarrhoea caused by Cryptosporidium parvum is a major problem in calves younger than 4 weeks of age. To date only a few compounds have been approved for prophylactic and none for therapeutic use. Nitazoxanide (NTZ) has proven its efficacy in vitro against C. parvum and is approved by FDA for the treatment of human cryptosporidiosis. In a first experimental study, 3 uninfected calves were treated with NTZ and pharmacokinetics was followed through blood samples. Serum samples of uninfected treated calves contained both NTZ metabolites (tizoxanide and tizoxanide glucuronide) and oral administration at 12 h intervals was considered as optimal. Three groups of three calves (1-3 days old) were then each inoculated with 1x10(7) oocysts of C. parvum (cattle genotype): the prophylactic group received 15 mg/kg body weight NTZ twice daily orally in milk from 1 day before to 8 days postinoculation (dpi). The therapeutic group received the same dosage of NTZ for 10 days from the appearance of diarrhoea (between 1 and 5 dpi). The control group was left untreated. All calves were monitored daily from day -1 to 28 dpi and faecal samples were collected for evaluation of consistency and for determination of oocyst numbers per gram (OPG) of faeces. Diarrhoea was observed in all calves within the first week. Neither prophylactic nor therapeutic use of NTZ improved the clinical appearance and calves of the therapeutic showed a longer diarrheic episode (p<0.05) with strong altered faecal consistency compared to the untreated control group. The number of days with oocyst excretion did not differ significantly between the groups. In 5 out of 6 infected and treated calves oocyst excretion stopped only after discontinuation of treatment. In the prophylactic and in the control group mean values of the sum of the daily OPG per calf (8.5x10(6) and 8.0x10(6), respectively) and of the mean daily number of OPG (0.3x10(6) and 0.3x10(6), respectively) were similar, while the therapeutic group showed significantly lower values (1.9x10(6) and 0.06x10(6), respectively, p<0.05). However oocyst determinations in this group may have been altered by the severe diarrhoea, diluting oocyst densities in the analysed faecal samples. In conclusion, these preliminary results about the first prophylactic and therapeutic use of NTZ in calves did not show the expected positive effect on the course of the Cryptosporidium-infection, neither on reducing the clinical severity, nor on oocyst excretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES The protozoan parasite Giardia lamblia causes giardiasis, a persistent diarrhoea. Nitro drugs such as the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are used for the treatment of giardiasis. Nitroreductases may play a role in activating these drugs. G. lamblia contains two nitroreductases, GlNR1 and GlNR2. The aim of this work was to elucidate the role of GlNR2. METHODS Expression of GlNR2 was analysed by reverse transcription PCR. Recombinant GlNR2 was overexpressed in G. lamblia and drug susceptibility was analysed. Recombinant GlNR2 was subjected to functional assays. Escherichia coli expressing full-length or truncated GlNR1 and GlNR2 were grown in the presence of nitro compounds. Using E. coli reporter strains for nitric oxide and DNA damage responses, we analysed whether GlNR1 and GlNR2 elicited the respective responses in the presence, or absence, of the drugs. RESULTS G. lamblia trophozoites overexpressing GlNR2 were less susceptible to both nitro drugs as compared with control trophozoites. GlNR2 was a functional nitroreductase when expressed in E. coli. E. coli expressing GlNR1 was more susceptible to metronidazole under aerobic and semi-aerobic and to nitazoxanide under semi-aerobic growth conditions. E. coli expressing GlNR2 was not susceptible to either drug. In reporter strains, GlNR1, but not GlNR2, elicited nitric oxide and DNA repair responses, even in the absence of nitro drugs. CONCLUSIONS These findings suggest that GlNR2 is an active nitroreductase with a mode of action different from that of GlNR1. Thus, susceptibility to nitro drugs may depend not only on activation, but also on inactivation of the drugs by specific nitroreductases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES The characterization of differential gene expression in Giardia lamblia WB C6 strain C4 resistant to metronidazole and nitazoxanide using microarray technology and quantitative real-time PCR. METHODS In a previous study, we created and characterized the G. lamblia WB C6 clone C4 resistant to nitazoxanide and metronidazole. In this study, using a microarray-based approach, we have identified open-reading frames (ORFs) that were differentially expressed in C4 when compared with its wild-type WB C6. Using quantitative real-time PCR, we have validated the expression patterns of some of those ORFs, focusing on chaperones such as heat-shock proteins in wild-type and C4 trophozoites. In order to induce an antigenic shift, trophozoites of both strains were subjected to a cycle of en- and excystation. Expression of selected genes and resistance to nitazoxanide and metronidazole were investigated after this cycle. RESULTS Forty of a total of 9115 ORFs were found to be up-regulated and 46 to be down-regulated in C4 when compared with wild-type. After a cycle of en- and excystation, resistance of C4 to nitazoxanide and metronidazole was lost. Resistance formation and en-/excystation were correlated with changes in expression of ORFs encoding for major surface antigens such as the variant surface protein TSA417 or AS7 ('antigenic shift'). Moreover, expression patterns of the cytosolic heat-shock protein HSP70 B2, HSP40, and of the previously identified nitazoxanide-binding proteins nitroreductase and protein disulphide isomerase PDI4 were correlated with resistance and loss of resistance after en-/excystation. C4 trophozoites had a higher thermotolerance level than wild-type trophozoites. After en-/excystation, this tolerance was lost. CONCLUSIONS These results suggest that resistance formation in Giardia to nitazoxanide and metronidazole is correlated with altered expression of genes involved in stress response such as heat-shock proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thiazolide nitazoxanide (NTZ) and some derivatives exhibit considerable in vitro activities against a broad range of parasites, including the apicomplexans Neospora caninum and Toxoplasma gondii tachyzoites. In order to identify potential molecular targets for this compound in both parasites, RM4847 was coupled to epoxy-agarose and affinity chromatography was performed. A protein of approximately 35 kDa was eluted upon RM4847-affinity-chromatography from extracts of N. caninum-infected human foreskin fibroblasts (HFF) and non-infected HFF, but no protein was eluted when affinity chromatography was performed with T. gondii or N. caninum tachyzoite extracts. Mass spectrometry analysis identified the 35 kDa protein as human quinone reductase NQO1 (P15559; QR). Within 8h after infection of HFF with N. caninum tachyzoites, QR transcript expression levels were notably increased, but no such increase was observed upon infection with T. gondii tachyzoites. Treatment of non-infected HFF with RM4847 did also lead to an increase of QR transcript levels. The enzymatic activity of 6-histidine-tagged recombinant QR (recQR) was assayed using menadione as a substrate. The thiazolides NTZ, tizoxanide and RM4847 inhibited recQR activity on menadione in a concentration-dependent manner. Moreover, a small residual reducing activity was observed when these thiazolides were offered as substrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: The protozoan parasite Giardia lamblia causes the intestinal disease giardiasis, which may lead to acute and chronic diarrhoea in humans and various animal species. For treatment of this disease, several drugs such as the benzimidazole albendazole, the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are currently in use. Previously, a G. lamblia nitroreductase 1 (GlNR1) was identified as a nitazoxanide-binding protein. The aim of the present project was to elucidate the role of this enzyme in the mode of action of the nitro drugs nitazoxanide and metronidazole. METHODS: Recombinant GlNR1 was overexpressed in both G. lamblia and Escherichia coli (strain BL21). The susceptibility of the transfected bacterial and giardial cell lines to nitazoxanide and metronidazole was analysed. RESULTS: G. lamblia trophozoites overexpressing GlNR1 had a higher susceptibility to both nitro drugs. E. coli were fully resistant to nitazoxanide under both aerobic and semi-aerobic growth conditions. When grown semi-aerobically, bacteria overexpressing GlNR1 became susceptible to nitazoxanide. CONCLUSIONS: These findings suggest that GlNR1 activates nitro drugs via reduction yielding a cytotoxic product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current chemotherapy of alveolar echinococcosis (AE) is based on benzimidazoles such as albendazole and has been shown to be parasitostatic rather than parasiticidal, requiring lifelong duration. Thus, new and more efficient treatment options are urgently needed. By employing a recently validated assay based on the release of functional phosphoglucose isomerase (PGI) from dying parasites, the activities of 26 dicationic compounds and of the (+)- and (-)-erythro-enantiomers of mefloquine were investigated. Initial screening of compounds was performed at 40 muM, and those compounds exhibiting considerable antiparasitic activities were also assessed at lower concentrations. Of the dicationic drugs, DB1127 (a diguanidino compound) with activities comparable to nitazoxanide was further studied. The activity of DB1127 was dose dependent and led to severe structural alterations, as visualized by electron microscopy. The (+)- and (-)-erythro-enantiomers of mefloquine showed similar dose-dependent effects, although higher concentrations of these compounds than of DB1127 were required for metacestode damage. In conclusion, of the drugs investigated here, the diguanidino compound DB1127 represents the most promising compound for further study in appropriate in vivo models for Echinococcus multilocularis infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: The disease alveolar echinococcosis (AE), caused by the larval stage of the cestode Echinococcus multilocularis, is fatal if treatment is unsuccessful. Current treatment options are, at best, parasitostatic, and involve taking benzimidazoles (albendazole, mebendazole) for the whole of a patient's life. In conjunction with the recent development of optimized procedures for E. multilocularis metacestode cultivation, we aimed to develop a rapid and reliable drug screening test, which enables efficient screening of a large number of compounds in a relatively short time frame. METHODS: Metacestodes were treated in vitro with albendazole, the nitro-thiazole nitazoxanide and 29 nitazoxanide derivatives. The resulting leakage of phosphoglucose isomerase (PGI) activity into the medium supernatant was measured and provided an indication of compound efficacy. RESULTS: We show that upon in vitro culture of E. multilocularis metacestodes in the presence of active drugs such as albendazole, the nitro-thiazole nitazoxanide and 30 different nitazoxanide derivatives, the activity of PGI in culture supernatants increased. The increase in PGI activity correlated with the progressive degeneration and destruction of metacestode tissue in a time- and concentration-dependent manner, which allowed us to perform a structure-activity relationship analysis on the thiazolide compounds used in this study. CONCLUSIONS: The assay presented here is inexpensive, rapid, can be used in 24- and 96-well formats and will serve as an ideal tool for first-round in vitro tests on the efficacy of large numbers of antiparasitic compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aimed to search for and characterize parasite molecules, whose expression levels correlate with the viability and growth activity of Echinococcus multilocularis metacestodes. We focused on the expression profiles of 2 parasite-derived genes, 14-3-3 and II/3-10, as putative molecular markers for viability and growth activity of the larval parasite. In experiments in vivo, gene expression levels of 14-3-3 and II/3-10 were relatively quantified by real-time reverse transcription-PCR using a housekeeping gene, beta-actin, as a reference reaction. All three reactions were compared with growth activity of the parasite developing in permissive nu/nu and in non-permissive wild type BALB/c mice. At 2 months p.i., the transcription level of 14-3-3 was significantly higher in parasites actively proliferating in nu/nu mice compared to parasites moderately growing in wild type mice. Immunoblotting experiments confirmed at the protein level that 14-3-3 was over-expressed in parasites derived from nu/nu mice at 2 months p.i. In vitro treatment of E. multilocularis with an anti-echinococcal drug nitazoxanide resulted in a significant decrease of both 14-3-3 and II/3-10 transcription levels found after 8 days of treatment, which correlated with the kinetics of a housekeeping gene, beta-actin. The conclusion is that 14-3-3, combined with II/3-10, exhibits good potential as a molecular marker to assess viability and growth activity of the parasite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitazoxanide (2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide; NTZ) represents the parent compound of a novel class of broad-spectrum anti-parasitic compounds named thiazolides. NTZ is active against a wide variety of intestinal and tissue-dwelling helminths, protozoa, enteric bacteria and a number of viruses infecting animals and humans. While potent, this poses a problem in practice, since this obvious non-selectivity can lead to undesired side effects in both humans and animals. In this study, we used real time PCR to determine the in vitro activities of 29 different thiazolides (NTZ-derivatives), which carry distinct modifications on both the thiazole- and the benzene moieties, against the tachyzoite stage of the intracellular protozoan Neospora caninum. The goal was to identify a highly active compound lacking the undesirable nitro group, which would have a more specific applicability, such as in food animals. By applying self-organizing molecular field analysis (SOMFA), these data were used to develop a predictive model for future drug design. SOMFA performs self-alignment of the molecules, and takes into account the steric and electrostatic properties, in order to determine 3D-quantitative structure activity relationship models. The best model was obtained by overlay of the thiazole moieties. Plotting of predicted versus experimentally determined activity produced an r2 value of 0.8052 and cross-validation using the "leave one out" methodology resulted in a q2 value of 0.7987. A master grid map showed that large steric groups at the R2 position, the nitrogen of the amide bond and position Y could greatly reduce activity, and the presence of large steric groups placed at positions X, R4 and surrounding the oxygen atom of the amide bond, may increase the activity of thiazolides against Neospora caninum tachyzoites. The model obtained here will be an important predictive tool for future development of this important class of drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thiazolides represent a novel class of anti-infective drugs, with the nitrothiazole nitazoxanide [2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide] (NTZ) as the parent compound. NTZ exhibits a broad spectrum of activities against a wide variety of helminths, protozoa, and enteric bacteria infecting animals and humans. In vivo, NTZ is rapidly deacetylated to tizoxanide (TIZ), which exhibits similar activities. We have here comparatively investigated the in vitro effects of NTZ, TIZ, a number of other modified thiazolides, and metronidazole (MTZ) on Giardia lamblia trophozoites grown under axenic culture conditions and in coculture with the human cancer colon cell line Caco2. The modifications of the thiazolides included, on one hand, the replacement of the nitro group on the thiazole ring with a bromide, and, on the other hand, the differential positioning of methyl groups on the benzene ring. Of seven compounds with a bromo instead of a nitro group, only one, RM4820, showed moderate inhibition of Giardia proliferation in axenic culture, but not in coculture with Caco2 cells, with a 50% inhibitory concentration (IC50) of 18.8 microM; in comparison, NTZ and tizoxanide had IC50s of 2.4 microM, and MTZ had an IC50 of 7.8 microM. Moreover, the methylation or carboxylation of the benzene ring at position 3 resulted in a significant decrease of activity, and methylation at position 5 completely abrogated the antiparasitic effect of the nitrothiazole compound. Trophozoites treated with NTZ showed distinct lesions on the ventral disk as soon as 2 to 3 h after treatment, whereas treatment with metronidazole resulted in severe damage to the dorsal surface membrane at later time points.