25 resultados para Newtonian fluids
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Neuronal activity within the central nervous system (CNS) strictly depends on homeostasis and therefore does not tolerate uncontrolled entry of blood components. It has been generally believed that under normal conditions, the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) prevent immune cell entry into the CNS. This view has recently changed when it was realized that activated T cells are able to breach the BBB and the BCSFB to perform immune surveillance of the CNS. Here we propose that the immune privilege of the CNS is established by the specific morphological architecture of its borders resembling that of a medieval castle. The BBB and the BCSFB serve as the outer walls of the castle, which can be breached by activated immune cells serving as messengers for outside dangers. Having crossed the BBB or the BCSFB they reach the castle moat, namely the cerebrospinal fluid (CSF)-drained leptomeningeal and perivascular spaces of the CNS. Next to the CNS parenchyma, the castle moat is bordered by a second wall, the glia limitans, composed of astrocytic foot processes and a parenchymal basement membrane. Inside the castle, that is the CNS parenchyma proper, the royal family of sensitive neurons resides with their servants, the glial cells. Within the CSF-drained castle moat, macrophages serve as guards collecting all the information from within the castle, which they can present to the immune-surveying T cells. If in their communication with the castle moat macrophages, T cells recognize their specific antigen and see that the royal family is in danger, they will become activated and by opening doors in the outer wall of the castle allow the entry of additional immune cells into the castle moat. From there, immune cells may breach the inner castle wall with the aim to defend the castle inhabitants by eliminating the invading enemy. If the immune response by unknown mechanisms turns against self, that is the castle inhabitants, this may allow for continuous entry of immune cells into the castle and lead to the death of the castle inhabitants, and finally members of the royal family, the neurons. This review will summarize the molecular traffic signals known to allow immune cells to breach the outer and inner walls of the CNS castle moat and will highlight the importance of the CSF-drained castle moat in maintaining immune surveillance and in mounting immune responses in the CNS.
Resumo:
During the past two decades, chiral capillary electrophoresis (CE) emerged as a promising, effective and economic approach for the enantioselective determination of drugs and their metabolites in body fluids, tissues and in vitro preparations. This review discusses the principles and important aspects of CE-based chiral bioassays, provides a survey of the assays developed during the past 10 years and presents an overview of the key achievements encountered in that time period. Applications discussed encompass the pharmacokinetics of drug enantiomers in vivo and in vitro, the elucidation of the stereoselectivity of drug metabolism in vivo and in vitro, and bioanalysis of drug enantiomers of toxicological, forensic and doping interest. Chiral CE was extensively employed for research purposes to investigate the stereoselectivity associated with hydroxylation, dealkylation, carboxylation, sulfoxidation, N-oxidation and ketoreduction of drugs and metabolites. Enantioselective CE played a pivotal role in many biomedical studies, thereby providing new insights into the stereoselective metabolism of drugs in different species which might eventually lead to new strategies for optimization of pharmacotherapy in clinical practice.
Resumo:
Contagious bovine pleuropneumonia (CBPP) is the most serious cattle disease in Africa, caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC). CBPP control strategies currently rely on vaccination with a vaccine based on live attenuated strains of the organism. Recently, an lppQ(-) mutant of the existing vaccine strain T1/44 has been developed (Janis et al., 2008). This T1lppQ(-) mutant strain is devoid of lipoprotein LppQ, a potential virulence attribute of M. mycoides subsp. mycoides SC. It is designated as a potential live DIVA (Differentiating Infected from Vaccinated Animals) vaccine strain allowing both serological and etiological differentiation. The present paper reports on the validation of a control strategy for CBPP in cattle, whereby a TaqMan real-time PCR based on the lppQ gene has been developed for the direct detection of M. mycoides subsp. mycoides SC in ex vivo bronchoalveolar lavage fluids of cows and for the discrimination of wild type strains from the lppQ(-) mutant vaccine strain.
Resumo:
ABSTRACT: There is a high frequency of diarrhea and vomiting in childhood. As a consequence the focus of the present review is to recognize the different body fluid compartments, to clinically assess the degree of dehydration, to know how the equilibrium between extracellular fluid and intracellular fluid is maintained, to calculate the effective blood osmolality and discuss both parenteral fluid requirments and repair.