16 resultados para New product line
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This study investigates the relationship between top management team (TMT) innovation orientation and new product portfolio performance in small and medium-sized family firms by exploring two family firm-specific sources of TMT diversity as moderators: the number of generations involved in the TMT and the ratio of family members in the TMT. Results indicate that family-induced diversity in the TMT has opposing moderating effects. Although a positive relationship exists between TMT innovation orientation and new product portfolio performance when multiple generations are involved in the TMT, TMT innovation orientation and new product portfolio performance experience a negative relationship when the ratio of family members in the TMT is high. The study discusses theoretical and managerial implications of the findings and develops avenues for future research.
Resumo:
A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (−210 to 0 ‰ for δ D and −27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass spectrometry (IRMS) technique.
Resumo:
The International GNSS Service (IGS) issues four sets of so-called ultra-rapid products per day, which are based on the contributions of the IGS Analysis Centers. The traditional (“old”) ultra-rapid orbit and earth rotation parameters (ERP) solution of the Center for Orbit Determination in Europe (CODE) was based on the output of three consecutive 3-day long-arc rapid solutions. Information from the IERS Bulletin A was required to generate the predicted part of the old CODE ultra-rapid product. The current (“new”) product, activated in November 2013, is based on the output of exactly one multi-day solution. A priori information from the IERS Bulletin A is no longer required for generating and predicting the orbits and ERPs. This article discusses the transition from the old to the new CODE ultra-rapid orbit and ERP products and the associated improvement in reliability and performance. All solutions used in this article were generated with the development version of the Bernese GNSS Software. The package was slightly extended to meet the needs of the new CODE ultra-rapid generation.
Resumo:
We measured the concentrations and isotopic compositions of He, Ne, and Ar in bulk samples and metal separates of 14 ordinary chondrite falls with long exposure ages and high metamorphic grades. In addition, we measured concentrations of the cosmogenic radionuclides 10Be, 26Al, and 36Cl in metal separates and in the nonmagnetic fractions of the selected meteorites. Using cosmogenic 36Cl and 36Ar measured in the metal separates, we determined 36Cl-36Ar cosmic-ray exposure (CRE) ages, which are shielding-independent and therefore particularly reliable. Using the cosmogenic noble gases and radionuclides, we are able to decipher the CRE history for the studied objects. Based on the correlation 3He/21Ne versus 22Ne/21Ne, we demonstrate that, among the meteorites studied, only one suffered significant diffusive losses (about 35%). The data confirm that the linear correlation 3He/21Ne versus 22Ne/21Ne breaks down at high shielding. Using 36Cl-36Ar exposure ages and measured noble gas concentrations, we determine 21Ne and 38Ar production rates as a function of 22Ne/21Ne. The new data agree with recent model calculations for the relationship between 21Ne and 38Ar production rates and the 22Ne/21Ne ratio, which does not always provide unique shielding information. Based on the model calculations, we determine a new correlation line for 21Ne and 38Ar production rates as a function of the shielding indicator 22Ne/21Ne for H, L, and LL chondrites with preatmospheric radii less than about 65 cm. We also calculated the 10Be/21Ne and 26Al/21Ne production rate ratios for the investigated samples, which show good agreement with recent model calculations.
Resumo:
Investigating the new product portfolio innovativeness of family firms connects two important topics that have recently received considerable attention in innovation and family firm research. First, new product portfolio innovativeness has been identified as a critical determinant of firm performance. Second, research on family firms has focused on the questions of if and why family firms are more or less innovative than other organizational forms. Research investigating the innovativeness of family firms has often applied a risk-oriented perspective by identifying socioemotional wealth (SEW) as the main reference that determines firm behavior. Thus, prior research has mainly focused on the organizational context to predict innovation-related family firm behavior and neglected the impact of preferences and the behavior of the chief executive officer (CEO), which have both been shown to affect firm outcomes. Hence, this study aims to extend the previous research by introducing the CEO's disposition to organizational context variables to explain the new product portfolio innovativeness of small and medium-sized family firms. Specifically, this study explores how the organizational context (i.e., ownership by top management team [TMT] family members and generation in charge of the family firm) of family firms interacts with CEO risk-taking propensity to affect new product portfolio innovativeness. Using a sample of 114 German CEOs of small and medium-sized family firms operating in manufacturing industries, the results show that CEO risk-taking propensity has a positive effect on new product portfolio innovativeness. Moreover, the analyses show that the organizational context of family firms impacts the relationship between CEO risk-taking propensity and new product portfolio innovativeness. Specifically, the relationship between CEO risk-taking propensity and new product portfolio innovativeness is weaker if levels of ownership by TMT family members are high (high SEW). Additionally, the effect of CEO risk-taking propensity on new product portfolio innovativeness is stronger in family firms at earlier generational stages (high SEW). This result suggests that if SEW is a strong reference, family firm-specific characteristics can affect individual dispositions and, in turn, the behaviors of executives. Therefore, this study helps extend the knowledge on the determinants of new product portfolio innovativeness of family firms by considering an individual CEO preference and the organizational context variables of family firms simultaneously.
Resumo:
Upper echelon theory and research on innovation have considered top management teams and their behaviour and characteristics as important factors that positively influence innovativeness and organizational outcomes. Yet, innovation research has mostly focused on individual new product projects, and their performance and impact on firm performance. Recent research has started to apply a more holistic view in terms of innovation, by considering firm-wide innovation instead of single new products. Upper echelon research has concentrated on direct relationships between top management team characteristics and organizational outcomes. But recent research calls for mediating effects of the relationship between top management team characteristics and organizational outcomes. Hence, this study introduces firm innovativeness as a mediator between top management team innovation orientation and firm growth. Focusing on small and medium-sized firms, which often represent highly innovative firms, results show that firm innovativeness fully mediates the relationship between top management team innovation orientation and firm growth. Implications and future research are discussed.
Resumo:
HP802-247 is a new-generation, allogeneic tissue engineering product consisting of growth-arrested, human keratinocytes (K) and fibroblasts (F) delivered in a fibrin matrix by a spray device.
Resumo:
Catheter ablation procedures for atrial fibrillation (AF) often involve circumferential antral isolation of pulmonary veins (PV). Inability to reliably identify conduction gaps on the ablation line necessitates placing additional lesions within the intended lesion set.
Resumo:
The new Bern cyclotron laboratory aims at industrial radioisotope production for PET diagnostics and multidisciplinary research by means of a specifically conceived beam transfer line, terminated in a separate bunker. In this framework, an innovative beam monitor detector based on doped silica and optical fibres has been designed, constructed, and tested. Scintillation light produced by Ce and Sb doped silica fibres moving across the beam is measured, giving information on beam position, shape, and intensity. The doped fibres are coupled to commercial optical fibres, allowing the read-out of the signal far away from the radiation source. This general-purpose device can be easily adapted for any accelerator used in medical applications and is suitable either for low currents used in hadrontherapy or for currents up to a few μA for radioisotope production, as well as for both pulsed and continuous beams.