11 resultados para New Haven Redevelopment Agency. Family Relocation Office.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Phenotypic and phylogenetic studies were performed on eight Gram-negative-staining, rod-shaped bacteria isolated from seals. Biochemical and physiological studies showed identical profiles for all of the isolates and indicated that they were related to the family Pasteurellaceae. 16S rRNA gene sequencing demonstrated that the organism represented a distinct cluster with two sublines within the family Pasteurellaceae with <96% sequence similarity to any recognized species. Multilocus sequence analysis (MLSA) including rpoB, infB and recN genes further confirmed these findings with the eight isolates forming a genus-like cluster with two branches. Genome relatedness as deduced from recN gene sequences suggested that the isolates represented a new genus with two species. On the basis of the results of the phylogenetic analysis and phenotypic criteria, it is proposed that these bacteria from seals are classified as Bisgaardia hudsonensis gen. nov., sp. nov. (the type species) and Bisgaardia genomospecies 1. The G+C content of the DNA was 39.5 mol%. The type strain of Bisgaardia hudsonensis gen. nov., sp. nov. is M327/99/2(T) (=CCUG 43067(T)=NCTC 13475(T)=98-D-690B(T)) and the reference strain of Bisgaardia genomospecies 1 is M1765/96/5 (=CCUG 59551=NCTC 13474).
Resumo:
Gram-negative, coccoid, non-motile bacteria that are catalase-, urease- and indole-negative, facultatively anaerobic and oxidase-positive were isolated from the bovine rumen using an improved selective medium for members of the Pasteurellaceae. All strains produced significant amounts of succinic acid under anaerobic conditions with glucose as substrate. Phenotypic characterization and multilocus sequence analysis (MLSA) using 16S rRNA, rpoB, infB and recN genes were performed on seven independent isolates. All four genes showed high sequence similarity to their counterparts in the genome sequence of the patent strain MBEL55E, but less than 95 % 16S rRNA gene sequence similarity to any other species of the Pasteurellaceae. Genetically these strains form a very homogeneous group in individual as well as combined phylogenetic trees, clearly separated from other genera of the family from which they can also be separated based on phenotypic markers. Genome relatedness as deduced from the recN gene showed high interspecies similarities, but again low similarity to any of the established genera of the family. No toxicity towards bovine, human or fish cells was observed and no RTX toxin genes were detected in members of the new taxon. Based on phylogenetic clustering in the MLSA analysis, the low genetic similarity to other genera and the phenotypic distinction, we suggest to classify these bovine rumen isolates as Basfia succiniciproducens gen. nov., sp. nov. The type strain is JF4016(T) (=DSM 22022(T) =CCUG 57335(T)).
Resumo:
Gram-negative, nonmotile bacteria that are catalase, oxidase, and urease positive are regularly isolated from the airways of horses with clinical signs of respiratory disease. On the basis of the findings by a polyphasic approach, we propose that these strains be classified as Nicoletella semolina gen. nov, sp. nov., a new member of the family Pasteurellaceae. N. semolina reduces nitrate to nitrite but is otherwise biochemically inert; this includes the lack of an ability to ferment glucose and other sugars. Growth is fastidious, and the isolates have a distinctive colony morphology, with the colonies being dry and waxy and looking like a semolina particle that can be moved around on an agar plate without losing their shape. DNA-DNA hybridization data and multilocus phylogenetic analysis, including 16S rRNA gene (rDNA), rpoB, and infB sequencing, clearly placed N. semolina as a new genus in the family Pasteurellaceae. In all the phylogenetic trees constructed, N. semolina is on a distinct branch displaying approximately 5% 16S rDNA, approximately 16% rpoB, and approximately 20% infB sequence divergence from its nearest relative within the family Pasteurellaceae. High degrees of conservation of the 16S rDNA (99.8%), rpoB (99.6%), and infB (99.7%) sequences exist within the species, indicating that N. semolina isolates not only are phenotypically homogeneous but also are genetically homogeneous. The type strain of N. semolina is CCUG43639(T) (DSM16380(T)).