2 resultados para Neuroretina

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To test the hypothesis that hyporeflective spaces in the neuroretina found on optical coherence tomography (OCT) examination have different optical reflectivities according to whether they are associated with exudation or degeneration. METHODS: Retrospective analysis of eyes with idiopathic perifoveal telangiectasia (IPT), diabetic macular edema (DME), idiopathic central serous chorioretinopathy (CSC), retinitis pigmentosa (RP), or cone dystrophy (CD) and eyes of healthy control subjects. OCT scans were performed. Raw scan data were exported and used to calculate light reflectivity profiles. Reflectivity data were acquired by projecting three rectangular boxes, each 50 pixels long and 5 pixels wide, into the intraretinal cystoid spaces, centrally onto unaffected peripheral RPE, and onto the prefoveolar vitreous. Light reflectivity in the retinal pigment epithelium (RPE), vitreous, and intraretinal spaces for the different retinal conditions and control subjects were compared. RESULTS: Reflectivities of the vitreous and the RPE were similar among the groups. Hyporeflective spaces in eyes with exudation (DME, RP, and CSC) had higher reflectivity compared with the mean reflectivity of the vitreous, whereas the cystoid spaces in the maculae of the eyes without exudation (CD and IPT) had a lower reflectivity than did the normal vitreous. CONCLUSIONS: Analysis of the light reflectivity profiles may be a tool to determine whether the density of hyporeflective spaces in the macula is greater or less than that of the vitreous, and may be a way to differentiate degenerative from exudative macular disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because proliferative vitreoretinopathy cannot be effectively treated, its prevention is indispensable for the success of surgery for retinal detachment. The elaboration of preventive and therapeutic strategies depends upon the identification of patients who are genetically predisposed to develop the disease, as well as upon an understanding of the biological process involved and the role of local factors, such as the status of the uveovascular barrier. Detachment of the retina or vitreous activates glia to release cytokines and ATP, which not only protect the neuroretina but also promote inflammation, retinal ischemia, cell proliferation, and tissue remodeling. The vitreal microenvironment favors cellular de-differentiation and proliferation of cells with nonspecific nutritional requirements. This may render a pharmacological inhibition of their growth difficult without causing damage to the pharmacologically vulnerable neuroretina. Moreover, reattachment of the retina relies upon the local induction of a controlled wound-healing response involving macrophages and proliferating glia. Hence, the functional outcome of proliferative vitreoretinopathy will be determined by the equilibrium established between protective and destructive repair mechanisms, which will be influenced by the location and the degree of damage to the photoreceptor cells that is induced by peri-retinal gliosis.