3 resultados para Neural Modeling Fields

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We developed a geospatial model that calculates ambient high-frequency electromagnetic field (HF-EMF) strengths of stationary transmission installations such as mobile phone base stations and broadcast transmitters with high spatial resolution in the order of 1 m. The model considers the location and transmission patterns of the transmitters, the three-dimensional topography, and shielding effects by buildings. The aim of the present study was to assess the suitability of the model for exposure monitoring and for epidemiological research. We modeled time-averaged HF-EMF strengths for an urban area in the city of Basel as well as for a rural area (Bubendorf). To compare modeling with measurements, we selected 20 outdoor measurement sites in Basel and 18 sites in Bubendorf. We calculated Pearson's correlation coefficients between modeling and measurements. Chance-corrected agreement was evaluated by weighted Cohen's kappa statistics for three exposure categories. Correlation between measurements and modeling of the total HF-EMF strength was 0.67 (95% confidence interval (CI): 0.33-0.86) in the city of Basel and 0.77 (95% CI: 0.46-0.91) in the rural area. In both regions, kappa coefficients between measurements and modeling were 0.63 and 0.77 for the total HF-EMF strengths and for all mobile phone frequency bands. First evaluation of our geospatial model yielded substantial agreement between modeling and measurements. However, before the model can be applied for future epidemiologic research, additional validation studies focusing on indoor values are needed to improve model validity.Journal of Exposure Science and Environmental Epidemiology (2008) 18, 183-191; doi:10.1038/sj.jes.7500575; published online 4 April 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brian electric activity is viewed as sequences of momentary maps of potential distribution. Frequency-domain source modeling, estimation of the complexity of the trajectory of the mapped brain field distributions in state space, and microstate parsing were used as analysis tools. Input-presentation as well as task-free (spontaneous thought) data collection paradigms were employed. We found: Alpha EEG field strength is more affected by visualizing mentation than by abstract mentation, both input-driven as well as self-generated. There are different neuronal populations and brain locations of the electric generators for different temporal frequencies of the brain field. Different alpha frequencies execute different brain functions as revealed by canonical correlations with mentation profiles. Different modes of mentation engage the same temporal frequencies at different brain locations. The basic structure of alpha electric fields implies inhomogeneity over time — alpha consists of concatenated global microstates in the sub-second range, characterized by quasi-stable field topographies, and rapid transitions between the microstates. In general, brain activity is strongly discontinuous, indicating that parsing into field landscape-defined microstates is appropriate. Different modes of spontaneous and induced mentation are associated with different brain electric microstates; these are proposed as candidates for psychophysiological ``atoms of thought''.