10 resultados para Network management systems
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Digital Rights Management Systems (DRMS) are seen by content providers as the appropriate tool to, on the one hand, fight piracy and, on the other hand, monetize their assets. Although these systems claim to be very powerful and include multiple protection technologies, there is a lack of understanding about how such systems are currently being implemented and used by content providers. The aim of this paper is twofold. First, it provides a theoretical basis through which we present shortly the seven core protection technologies of a DRMS. Second, this paper provides empirical evidence that the seven protection technologies outlined in the first section of this paper are the most commonly used technologies. It further evaluates to what extent these technologies are being used within the music and print industry. It concludes that the three main Technologies are encryption, password, and payment systems. However, there are some industry differences: the number of protection technologies used, the requirements for a DRMS, the required investment, or the perceived success of DRMS in fighting piracy.
Resumo:
Technology advances in hardware, software and IP-networks such as the Internet or peer-to-peer file sharing systems are threatening the music business. The result has been an increasing amount of illegal copies available on-line as well as off-line. With the emergence of digital rights management systems (DRMS), the music industry seems to have found the appropriate tool to simultaneously fight piracy and to monetize their assets. Although these systems are very powerful and include multiple technologies to prevent piracy, it is as of yet unknown to what extent such systems are currently being used by content providers. We provide empirical analyses, results, and conclusions related to digital rights management systems and the protection of digital content in the music industry. It shows that most content providers are protecting their digital content through a variety of technologies such as passwords or encryption. However, each protection technology has its own specific goal, and not all prevent piracy. The majority of the respondents are satisfied with their current protection but want to reinforce it for the future, due to fear of increasing piracy. Surprisingly, although encryption is seen as the core DRM technology, only few companies are currently using it. Finally, half of the respondents do not believe in the success of DRMS and their ability to reduce piracy.
Resumo:
Cost-efficient operation while satisfying performance and availability guarantees in Service Level Agreements (SLAs) is a challenge for Cloud Computing, as these are potentially conflicting objectives. We present a framework for SLA management based on multi-objective optimization. The framework features a forecasting model for determining the best virtual machine-to-host allocation given the need to minimize SLA violations, energy consumption and resource wasting. A comprehensive SLA management solution is proposed that uses event processing for monitoring and enables dynamic provisioning of virtual machines onto the physical infrastructure. We validated our implementation against serveral standard heuristics and were able to show that our approach is significantly better.
Resumo:
Cloud Computing enables provisioning and distribution of highly scalable services in a reliable, on-demand and sustainable manner. However, objectives of managing enterprise distributed applications in cloud environments under Service Level Agreement (SLA) constraints lead to challenges for maintaining optimal resource control. Furthermore, conflicting objectives in management of cloud infrastructure and distributed applications might lead to violations of SLAs and inefficient use of hardware and software resources. This dissertation focusses on how SLAs can be used as an input to the cloud management system, increasing the efficiency of allocating resources, as well as that of infrastructure scaling. First, we present an extended SLA semantic model for modelling complex service-dependencies in distributed applications, and for enabling automated cloud infrastructure management operations. Second, we describe a multi-objective VM allocation algorithm for optimised resource allocation in infrastructure clouds. Third, we describe a method of discovering relations between the performance indicators of services belonging to distributed applications and then using these relations for building scaling rules that a CMS can use for automated management of VMs. Fourth, we introduce two novel VM-scaling algorithms, which optimally scale systems composed of VMs, based on given SLA performance constraints. All presented research works were implemented and tested using enterprise distributed applications.
Resumo:
Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the delta N-15 and delta C-13 isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Delta delta N-15 (delta N-15 plant - delta N-15 soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in delta C-13 in hay and delta C-13 in both soil and hay between management types, but showed that delta C-13 abundances were significantly lower in soil of organic compared to conventional grasslands. delta C-15 values implied that management types did not substantially differ in nitrogen cycling. Only delta C-13 in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice.
Resumo:
In this work, we propose a distributed rate allocation algorithm that minimizes the average decoding delay for multimedia clients in inter-session network coding systems. We consider a scenario where the users are organized in a mesh network and each user requests the content of one of the available sources. We propose a novel distributed algorithm where network users determine the coding operations and the packet rates to be requested from the parent nodes, such that the decoding delay is minimized for all clients. A rate allocation problem is solved by every user, which seeks the rates that minimize the average decoding delay for its children and for itself. Since this optimization problem is a priori non-convex, we introduce the concept of equivalent packet flows, which permits to estimate the expected number of packets that every user needs to collect for decoding. We then decompose our original rate allocation problem into a set of convex subproblems, which are eventually combined to obtain an effective approximate solution to the delay minimization problem. The results demonstrate that the proposed scheme eliminates the bottlenecks and reduces the decoding delay experienced by users with limited bandwidth resources. We validate the performance of our distributed rate allocation algorithm in different video streaming scenarios using the NS-3 network simulator. We show that our system is able to take benefit of inter-session network coding for simultaneous delivery of video sessions in networks with path diversity.
Resumo:
Cloud Computing has evolved to become an enabler for delivering access to large scale distributed applications running on managed network-connected computing systems. This makes possible hosting Distributed Enterprise Information Systems (dEISs) in cloud environments, while enforcing strict performance and quality of service requirements, defined using Service Level Agreements (SLAs). {SLAs} define the performance boundaries of distributed applications, and are enforced by a cloud management system (CMS) dynamically allocating the available computing resources to the cloud services. We present two novel VM-scaling algorithms focused on dEIS systems, which optimally detect most appropriate scaling conditions using performance-models of distributed applications derived from constant-workload benchmarks, together with SLA-specified performance constraints. We simulate the VM-scaling algorithms in a cloud simulator and compare against trace-based performance models of dEISs. We compare a total of three SLA-based VM-scaling algorithms (one using prediction mechanisms) based on a real-world application scenario involving a large variable number of users. Our results show that it is beneficial to use autoregressive predictive SLA-driven scaling algorithms in cloud management systems for guaranteeing performance invariants of distributed cloud applications, as opposed to using only reactive SLA-based VM-scaling algorithms.