5 resultados para Network loss
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset neurological disease resulting from mutations in the SACS gene encoding sacsin, a 4,579-aa protein of unknown function. Originally identified as a founder disease in Québec, ARSACS is now recognized worldwide. Prominent features include pyramidal spasticity and cerebellar ataxia, but the underlying pathology and pathophysiological mechanisms are unknown. We have generated an animal model for ARSACS, sacsin knockout mice, that display age-dependent neurodegeneration of cerebellar Purkinje cells. To explore the pathophysiological basis for this observation, we examined the cell biological properties of sacsin. We show that sacsin localizes to mitochondria in non-neuronal cells and primary neurons and that it interacts with dynamin-related protein 1, which participates in mitochondrial fission. Fibroblasts from ARSACS patients show a hyperfused mitochondrial network, consistent with defects in mitochondrial fission. Sacsin knockdown leads to an overly interconnected and functionally impaired mitochondrial network, and mitochondria accumulate in the soma and proximal dendrites of sacsin knockdown neurons. Disruption of mitochondrial transport into dendrites has been shown to lead to abnormal dendritic morphology, and we observe striking alterations in the organization of dendritic fields in the cerebellum of knockout mice that precedes Purkinje cell death. Our data identifies mitochondrial dysfunction/mislocalization as the likely cellular basis for ARSACS and indicates a role for sacsin in regulation of mitochondrial dynamics.
Resumo:
Integrin alpha10beta1 is a collagen-binding integrin expressed on chondrocytes. In order to unravel the role of the alpha10 integrin during development, we generated mice carrying a constitutive deletion of the alpha10 integrin gene. The mutant mice had a normal lifespan and were fertile but developed a growth retardation of the long bones. Analysis of the skeleton revealed defects in the growth plate after birth characterized by a disturbed columnar arrangement of chondrocytes, abnormal chondrocyte shape and reduced chondrocyte proliferation. Electron microscopy of growth plates from newborn mice revealed an increased number of apoptotic chondrocytes and reduced density of the collagen fibrillar network compared to these structures in control mice. These results demonstrate that integrin alpha10beta1 plays a specific role in growth plate morphogenesis and function.
Resumo:
This paper considers a framework where data from correlated sources are transmitted with the help of network coding in ad hoc network topologies. The correlated data are encoded independently at sensors and network coding is employed in the intermediate nodes in order to improve the data delivery performance. In such settings, we focus on the problem of reconstructing the sources at decoder when perfect decoding is not possible due to losses or bandwidth variations. We show that the source data similarity can be used at decoder to permit decoding based on a novel and simple approximate decoding scheme. We analyze the influence of the network coding parameters and in particular the size of finite coding fields on the decoding performance. We further determine the optimal field size that maximizes the expected decoding performance as a trade-off between information loss incurred by limiting the resolution of the source data and the error probability in the reconstructed data. Moreover, we show that the performance of the approximate decoding improves when the accuracy of the source model increases even with simple approximate decoding techniques. We provide illustrative examples showing how the proposed algorithm can be deployed in sensor networks and distributed imaging applications.
Resumo:
Both deepening sleep and evolving epileptic seizures are associated with increasing slow-wave activity. Larger-scale functional networks derived from electroencephalogram indicate that in both transitions dramatic changes of communication between brain areas occur. During seizures these changes seem to be 'condensed', because they evolve more rapidly than during deepening sleep. Here we set out to assess quantitatively functional network dynamics derived from electroencephalogram signals during seizures and normal sleep. Functional networks were derived from electroencephalogram signals from wakefulness, light and deep sleep of 12 volunteers, and from pre-seizure, seizure and post-seizure time periods of 10 patients suffering from focal onset pharmaco-resistant epilepsy. Nodes of the functional network represented electrical signals recorded by single electrodes and were linked if there was non-random cross-correlation between the two corresponding electroencephalogram signals. Network dynamics were then characterized by the evolution of global efficiency, which measures ease of information transmission. Global efficiency was compared with relative delta power. Global efficiency significantly decreased both between light and deep sleep, and between pre-seizure, seizure and post-seizure time periods. The decrease of global efficiency was due to a loss of functional links. While global efficiency decreased significantly, relative delta power increased except between the time periods wakefulness and light sleep, and pre-seizure and seizure. Our results demonstrate that both epileptic seizures and deepening sleep are characterized by dramatic fragmentation of larger-scale functional networks, and further support the similarities between sleep and seizures.
Resumo:
OBJECTIVE The aim of this cross-sectional study was to estimate bone loss of implants with platform-switching design and analyze possible risk indicators after 5 years of loading in a multi-centered private practice network. METHOD AND MATERIALS Peri-implant bone loss was measured radiographically as the distance from the implant shoulder to the mesial and distal alveolar crest, respectively. Risk factor analysis for marginal bone loss included type of implant prosthetic treatment concept and dental status of the opposite arch. RESULTS A total of 316 implants in 98 study patients after 5 years of loading were examined. The overall mean value for radiographic bone loss was 1.02 mm (SD ± 1.25 mm, 95% CI 0.90- 1.14). Correlation analyses indicated a strong association of peri-implant bone loss > 2 mm for removable implant-retained prostheses with an odds ratio of 53.8. CONCLUSION The 5-year-results of the study show clinically acceptable values of mean bone loss after 5 years of loading. Implant-supported removable prostheses seem to be a strong co-factor for extensive bone level changes compared to fixed reconstructions. However, these results have to be considered for evaluation of the included special cohort under private dental office conditions.