2 resultados para Netting
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Determining the impact of insect herbivores on forest tree seedlings and saplings is difficult without experimentation in the field. Moreover, this impact may be heterogeneous in time and space because of seasonal rainfall and canopy disturbances, or ‘gaps’, which can influence both insect abundance and plant performance. In this study we used fine netting to individually protect seedlings of Microberlinia bisulcata, Tetraberlinia bifoliolata and Tetraberlinia korupensis trees (Fabaceae = Leguminosae) from insects in 41 paired gap-understorey locations across 80 ha of primary rain forest (Korup, Cameroon). For all species, growth in height and leaf numbers was negligible in the understorey, where M. bisulcata had the lowest survival after c. 2 years. In gaps, however, all species responded positively with pronounced above-ground growth across seasons. When exposed to herbivores their seedling height growth was similar, but in the absence of herbivores, M. bisulcata significantly outgrew both Tetraberlinia species and matched their leaf numbers. This result suggests that insect herbivores might play an important role in maintaining species coexistence by mitigating sapling abundance of the more palatable M. bisulcata, which in gaps was eaten the most severely. The higher ratio in static leaf damage of control-to-caged M. bisulcata seedlings in gaps than understorey locations was consistent with the Plant Vigour Hypothesis. This result, however, did not apply to either Tetraberlinia species. For M. bisulcata and T. korupensis, but not T. bifoliolata (the most shade-tolerant species), caging improved relative seedling survival in the understory locations compared to gaps, providing restricted support for the Limiting Resource Model. Approximately 2.25 years after treatments were removed, the caged seedlings were taller and had more leaves than controls in all three species, and the effect remained strongest for M. bisulcata. We conclude that in this community the impact of leaf herbivory on seedling growth in gaps is strong for the dominant M. bisulcata, which coupled to a very low shade-tolerance contributes to limiting its regeneration. However, because gaps are common to most forests, insect herbivores may be having impacts upon functionally similar tree species that are also characterized by low sapling recruitment much more widely than currently appreciated. An implication for the restoration and management of M. bisulcata populations in forests outside of Korup is that physical protection from herbivores of new seedlings where the canopy is opened by gaps, or by harvesting, should substantially increase its subcanopy regeneration, and thus, too, its opportunities for adult recruitment.
Resumo:
Ecological research and monitoring of lacustrine ecosystems often requires a whole-lake assessment of fish communities. Gillnet sampling offers an efficient means of estimating abundance, biomass and fish community composition. However the choice of gillnet sampling protocol may influence lake characterization via physical properties of the nets and allocation of sampling effort between littoral, benthic and pelagic habitats. This paper compares two commonly used, whole-lake sampling protocols applied across 17 prealpine, subalpine and alpine European lakes ranging widely in size, depth and altitude to determine their relative strength for research and management applications. Effort-corrected estimates of abundance, biomass and species richness were correlated between the protocols and both distinguished the trout-dominated alpine communities from subalpine and prealpine lakes dominated by whitefish and perch. A considerable amount of variance remained unexplained between the two protocols however, which seemed to correspond with differences in the proportion of effort among benthic and pelagic habitats. We suggest that both the European standard (CEN) and vertical (VERT) netting protocols are suitable for assessing ecological status and monitoring changes in lake fish communities through time. However the details of each protocol should be kept in mind when comparing fish communities between lakes. Mesh sizes used in CEN nets produce a more even size frequency distribution, suggesting that this protocol is most appropriate for assessing size structure of fish assemblages. The high proportion of netting effort in benthic habitats shallower than 70 m depth under the CEN protocol means that, particularly in larger lakes, outcomes will be disproportionately influenced by the ecological condition of this habitat. The VERT protocol presumably provides a more accurate estimate of whole-lake CPUE and community composition because effort, in terms of net area, is more evenly distributed across the entire volume of the lake. This is particularly important in large and deep lakes where pelagic habitats occupy a high proportion of the lake volume.