149 resultados para Neptunium, Opalinuston, Sorption, Diffusion, Speziation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Clay mineral-rich sedimentary formations are currently under investigation to evaluate their potential use as host formations for installation of deep underground disposal facilities for radioactive waste (e.g. Boom Clay (BE), Opalinus Clay (CH), Callovo-Oxfordian argillite (FR)). The ultimate safety of the corresponding repository concepts depends largely on the capacity of the host formation to limit the flux towards the biosphere of radionuclides (RN) contained in the waste to acceptably low levels. Data for diffusion-driven transfer in these formations shows extreme differences in the measured or modelled behaviour for various radionuclides, e. g. between halogen RN (Cl-36, I-129) and actinides (U-238,U-235, Np-237, Th-232, etc.), which result from major differences between RN of the effects on transport of two phenomena: diffusion and sorption. This paper describes recent research aimed at improving understanding of these two phenomena, focusing on the results of studies carried out during the EC Funmig IP on clayrocks from the above three formations and from the Boda formation (HU). Project results regarding phenomena governing water, cation and anion distribution and mobility in the pore volumes influenced by the negatively-charged surfaces of clay minerals show a convergence of the modelling results for behaviour at the molecular scale and descriptions based on electrical double layer models. Transport models exist which couple ion distribution relative to the clay-solution interface and differentiated diffusive characteristics. These codes are able to reproduce the main trends in behaviour observed experimentally, e.g. D-e(anion) < D-e(HTO) < D-e(cation) and D-e(anion) variations as a function of ionic strength and material density. These trends are also well-explained by models of transport through ideal porous matrices made up of a charged surface material. Experimental validation of these models is good as regards monovalent alkaline cations, in progress for divalent electrostatically-interacting cations (e.g. Sr2+) and still relatively poor for 'strongly sorbing', high K-d cations. Funmig results have clarified understanding of how clayrock mineral composition, and the corresponding organisation of mineral grain assemblages and their associated porosity, can affect mobile solute (anions, HTO) diffusion at different scales (mm to geological formation). In particular, advances made in the capacity to map clayrock mineral grain-porosity organisation at high resolution provide additional elements for understanding diffusion anisotropy and for relating diffusion characteristics measured at different scales. On the other hand, the results of studies focusing on evaluating the potential effects of heterogeneity on mobile species diffusion at the formation scale tend to show that there is a minimal effect when compared to a homogeneous property model. Finally, the results of a natural tracer-based study carried out on the Opalinus Clay formation increase confidence in the use of diffusion parameters measured on laboratory scale samples for predicting diffusion over geological time-space scales. Much effort was placed on improving understanding of coupled sorption-diffusion phenomena for sorbing cations in clayrocks. Results regarding sorption equilibrium in dispersed and compacted materials for weakly to moderately sorbing cations (Sr2+, Cs+, Co2+) tend to show that the same sorption model probably holds in both systems. It was not possible to demonstrate this for highly sorbing elements such as Eu(III) because of the extremely long times needed to reach equilibrium conditions, but there does not seem to be any clear reason why such elements should not have similar behaviour. Diffusion experiments carried out with Sr2+, Cs+ and Eu(III) on all of the clayrocks gave mixed results and tend to show that coupled diffusion-sorption migration is much more complex than expected, leading generally to greater mobility than that predicted by coupling a batch-determined K-d and Ficks law based on the diffusion behaviour of HTO. If the K-d measured on equivalent dispersed systems holds as was shown to be the case for Sr, Cs (and probably Co) for Opalinus Clay, these results indicate that these cations have a D-e value higher than HTO (up to a factor of 10 for Cs+). Results are as yet very limited for very moderate to strongly sorbing species (e.g. Co(II), Eu(III), Cu(II)) because of their very slow transfer characteristics. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In situ diffusion experiments are performed in geological formations at underground research laboratories to overcome the limitations of laboratory diffusion experiments and investigate scale effects. Tracer concentrations are monitored at the injection interval during the experiment (dilution data) and measured from host rock samples around the injection interval at the end of the experiment (overcoring data). Diffusion and sorption parameters are derived from the inverse numerical modeling of the measured tracer data. The identifiability and the uncertainties of tritium and Na-22(+) diffusion and sorption parameters are studied here by synthetic experiments having the same characteristics as the in situ diffusion and retention (DR) experiment performed on Opalinus Clay. Contrary to previous identifiability analyses of in situ diffusion experiments, which used either dilution or overcoring data at approximate locations, our analysis of the parameter identifiability relies simultaneously on dilution and overcoring data, accounts for the actual position of the overcoring samples in the claystone, uses realistic values of the standard deviation of the measurement errors, relies on model identification criteria to select the most appropriate hypothesis about the existence of a borehole disturbed zone and addresses the effect of errors in the location of the sampling profiles. The simultaneous use of dilution and overcoring data provides accurate parameter estimates in the presence of measurement errors, allows the identification of the right hypothesis about the borehole disturbed zone and diminishes other model uncertainties such as those caused by errors in the volume of the circulation system and the effective diffusion coefficient of the filter. The proper interpretation of the experiment requires the right hypothesis about the borehole disturbed zone. A wrong assumption leads to large estimation errors. The use of model identification criteria helps in the selection of the best model. Small errors in the depth of the overcoring samples lead to large parameter estimation errors. Therefore, attention should be paid to minimize the errors in positioning the depth of the samples. The results of the identifiability analysis do not depend on the particular realization of random numbers. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract Claystones are considered worldwide as barrier materials for nuclear waste repositories. In the Mont Terri underground research laboratory (URL), a nearly 4-year diffusion and retention (DR) experiment has been performed in Opalinus Clay. It aimed at (1) obtaining data at larger space and time scales than in laboratory experiments and (2) under relevant in situ conditions with respect to pore water chemistry and mechanical stress, (3) quantifying the anisotropy of in situ diffusion, and (4) exploring possible effects of a borehole-disturbed zone. The experiment included two tracer injection intervals in a borehole perpendicular to bedding, through which traced artificial pore water (APW) was circulated, and a pressure monitoring interval. The APW was spiked with neutral tracers (HTO, HDO, H2O-18), anions (Br, I, SeO4), and cations (Na-22, Ba-133, Sr-85, Cs-137, Co-60, Eu-152, stable Cs, and stable Eu). Most tracers were added at the beginning, some were added at a later stage. The hydraulic pressure in the injection intervals was adjusted according to the measured value in the pressure monitoring interval to ensure transport by diffusion only. Concentration time-series in the APW within the borehole intervals were obtained, as well as 2D concentration distributions in the rock at the end of the experiment after overcoring and subsampling which resulted in �250 samples and �1300 analyses. As expected, HTO diffused the furthest into the rock, followed by the anions (Br, I, SeO4) and by the cationic sorbing tracers (Na-22, Ba-133, Cs, Cs-137, Co-60, Eu-152). The diffusion of SeO4 was slower than that of Br or I, approximately proportional to the ratio of their diffusion coefficients in water. Ba-133 diffused only into �0.1 m during the �4 a. Stable Cs, added at a higher concentration than Cs-137, diffused further into the rock than Cs-137, consistent with a non-linear sorption behavior. The rock properties (e.g., water contents) were rather homogeneous at the centimeter scale, with no evidence of a borehole-disturbed zone. In situ anisotropy ratios for diffusion, derived for the first time directly from field data, are larger for HTO and Na-22 (�5) than for anions (�3�4 for Br and I). The lower ionic strength of the pore water at this location (�0.22 M) as compared to locations of earlier experiments in the Mont Terri URL (�0.39 M) had no notable effect on the anion accessible pore fraction for Cl, Br, and I: the value of 0.55 is within the range of earlier data. Detailed transport simulations involving different codes will be presented in a companion paper.
Resumo:
The diffusion properties of the Opalinus Clay were studied in the underground research laboratory at Mont Terri (Canton Jura, Switzerland) and the results were compared with diffusion data measured in the laboratory on small-scale samples. The diffusion of HTO, Na-22(+), Cs+ and I- were investigated for a period of 10 months. The diffusion equipment used in the field experiment was designed in such a way that a solution of tracers was circulated through a sintered metal screen placed at the end of a borehole drilled in the formation. The concentration decrease caused by the diffusion of tracers into the rock could be followed with time and allowed first estimations of the effective diffusion coefficient. After 10 months, the diffusion zone was over-cored and the tracer profiles measured. From these profiles, effective diffusion coefficients and rock capacity factors Could be extracted by applying a two-dimensional transport model including diffusion and sorption. The simulations were done with the reactive transport code CRUNCH. In addition, results obtained from through-diffusion experiments oil small-sized samples with HTO, Cl-36(-) and Na-22(+) are presented and compared with the in situ data. In all cases. excellent agreement between the two data sets exists. Results for Cs+ indicated five times higher diffusion rates relative to HTO. Corresponding laboratory diffusion measurements are still lacking. However. our Cs+ data are in qualitative agreement wish through-diffusion data for Callovo-Oxfordian argillite rock samples. which also indicate significantly higher effective diffusivities for Cs+ relative to HTO.
Resumo:
The migration of radioactive and chemical contaminants in clay materials and argillaceous host rocks is characterised by diffusion and retention processes. Valuable information on such processes can be gained by combining diffusion studies at laboratory scale with field migration tests. In this work, the outcome of a multi-tracer in situ migration test performed in the Opalinus Clay formation in the Mont Terri underground rock laboratory (Switzerland) is presented. Thus, 1.16 x 10(5) Bq/L of HTO, 3.96 x 10(3) Bq/L of Sr-85, 6.29 x 10(2) Bq/L of Co-60, 2.01 x 10(-3) mol/L Cs, 9.10 x 10(-4) mol/L I and 1.04 x 10(-3) mol/L Br were injected into the borehole. The decrease of the radioisotope concentrations in the borehole was monitored using in situ gamma-spectrometry. The other tracers were analyzed with state-of-the-art laboratory procedures after sampling of small water aliquots from the reservoir. The diffusion experiment was carried out over a period of one year after which the interval section was overcored and analyzed. Based on the experimental data from the tracer evolution in the borehole and the tracer profiles in the rock, the diffusion of tracers was modelled with the numerical code CRUNCH. The results obtained for HTO (H-3), I- and Br- confirm previous lab and in situ diffusion data. Anionic fluxes into the formation were smaller compared to HTO because of anion exclusion effects. The migration of the cations Sr-85(2+), Cs+ and Co-60(2+) was found to be governed by both diffusion and sorption processes. For Sr-85(2+), the slightly higher diffusivity relative to HTO and the low sorption value are consistent with laboratory diffusion measurements on small-scale samples. In the case of Cs+, the numerically deduced high diffusivity and the Freundlich-type sorption behaviour is also supported by ongoing laboratory data. For Co, no laboratory diffusion data were yet available for comparison; however, the modelled data suggests that Co-60(2+) sorption was weaker than would be expected from available batch sorption data. Overall, the results demonstrate the feasibility of the experimental setup for obtaining high-quality diffusion data for conservative and sorbing tracers. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The diffusion of radionuclides is an important safety aspect for nuclear waste disposal in argillaceous host rocks. A long-term diffusion experiment, termed DI-A, is being carried out at the Mont Terri Rock Laboratory in the Opalinus Clay formation. The aim of this experiment is the understanding of the migration and sorption behaviour of cationic and anionic species in consolidated clays. This study reports on the experimental layout and the first results obtained from the DI-A experiment, which include the investigation of HTO, Na-22(+), Cs+, and I- migration during a period of 1 year by analysing these tracers in the water circulating in the borehole. In addition, results obtained from through-diffusion experiments on small-sized samples with HTO, I-, and Cl-36(-) are presented. The decrease of tracer concentrations in the borehole is fastest for Cs+, followed by Na-22(+), HTO, and finally I-. The chemical composition of the artificial pore water in the borehole shows very little variation with time, thus indicating almost no chemical disturbance around the borehole. Through-diffusion experiments in the laboratory that were performed parallel to the bedding plane with two different methods yielded effective diffusion coefficients for HTO of 4-5 X 10(-11) m(2) s(-1) and significantly lower ones for anions Cl- and I- (0.7-1.6 X 10(-11) m(2) s(-1)). The results indicate the importance of anion exclusion effects arising from the negatively charged clay surfaces. Furthermore, they demonstrate the anisotropic diffusion properties of the clay formation with significantly increased diffusion rates parallel to bedding relative to the perpendicular direction. The tracer data of the in situ experiment were successfully described with 2D diffusion models using diffusion and sorption parameters obtained from the above mentioned and other laboratory studies. The modelling results indicate that HTO and I- diffused with no retardation. The retardation of Na+ and Cs+ could be described by empirical sorption expressions from previously derived batch sorption (Cs+) or diffusion (Na+) experiments. Overall, the obtained results demonstrate the feasibility of the technical concept to study the diffusion of nonsorbing and sorbing tracers in consolidated clays. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
To determine the potential benefit of combined respiratory-cardiac triggering for diffusion-weighted imaging (DWI) of kidneys compared to respiratory triggering alone (RT).
Resumo:
To determine the inter-patient variability of apparent diffusion coefficients (ADC) and concurrent micro-circulation contributions from diffusion-weighted MR imaging (DW-MRI) in renal allografts early after transplantation, and to obtain initial information on whether these measures are altered in histologically proven acute allograft rejection (AR).
Resumo:
New treatment options for Niemann-Pick Type C (NPC) have recently become available. To assess the efficiency and efficacy of these new treatment markers for disease status and progression are needed. Both the diagnosis and the monitoring of disease progression are challenging and mostly rely on clinical impression and functional testing of horizontal eye movements. Diffusion tensor imaging (DTI) provides information about the microintegrity especially of white matter. We show here in a case report how DTI and measures derived from this imaging method can serve as adjunct quantitative markers for disease management in Niemann-Pick Type C. Two approaches are taken--first, we compare the fractional anisotropy (FA) in the white matter globally between a 29-year-old NPC patient and 18 healthy age-matched controls and show the remarkable difference in FA relatively early in the course of the disease. Second, a voxelwise comparison of FA values reveals where white matter integrity is compromised locally and demonstrate an individualized analysis of FA changes before and after 1year of treatment with Miglustat. This method might be useful in future treatment trials for NPC to assess treatment effects.
Resumo:
An imaging biomarker that would provide for an early quantitative metric of clinical treatment response in cancer patients would provide for a paradigm shift in cancer care. Currently, nonimage based clinical outcome metrics include morphology, clinical, and laboratory parameters, however, these are obtained relatively late following treatment. Diffusion-weighted MRI (DW-MRI) holds promise for use as a cancer treatment response biomarker as it is sensitive to macromolecular and microstructural changes which can occur at the cellular level earlier than anatomical changes during therapy. Studies have shown that successful treatment of many tumor types can be detected using DW-MRI as an early increase in the apparent diffusion coefficient (ADC) values. Additionally, low pretreatment ADC values of various tumors are often predictive of better outcome. These capabilities, once validated, could provide for an important opportunity to individualize therapy thereby minimizing unnecessary systemic toxicity associated with ineffective therapies with the additional advantage of improving overall patient health care and associated costs. In this report, we provide a brief technical overview of DW-MRI acquisition protocols, quantitative image analysis approaches and review studies which have implemented DW-MRI for the purpose of early prediction of cancer treatment response.
Resumo:
To evaluate the use of diffusion-weighted imaging (DWI) for the assessment of cartilage maturation in patients after matrix-associated autologous chondrocyte transplantation (MACT).
Resumo:
the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) was a prospective, randomized, double-blinded, placebo-controlled, phase II trial of alteplase between 3 and 6 hours after stroke onset. The primary outcome of infarct growth attenuation on MRI with alteplase in mismatch patients was negative when mismatch volumes were assessed volumetrically, without coregistration, which underestimates mismatch volumes. We hypothesized that assessing the extent of mismatch by coregistration of perfusion and diffusion MRI maps may more accurately allow the effects of alteplase vs placebo to be evaluated.
Resumo:
PURPOSE: To evaluate diffusion-weighted magnetic resonance (MR) imaging of the human placenta in fetuses with and fetuses without intrauterine growth restriction (IUGR) who were suspected of having placental insufficiency. MATERIALS AND METHODS: The study was approved by the local ethics committee, and written informed consent was obtained. The authors retrospectively evaluated 1.5-T fetal MR images from 102 singleton pregnancies (mean gestation ± standard deviation, 29 weeks ± 5; range, 21-41 weeks). Morphologic and diffusion-weighted MR imaging were performed. A region of interest analysis of the apparent diffusion coefficient (ADC) of the placenta was independently performed by two observers who were blinded to clinical data and outcome. Placental insufficiency was diagnosed if flattening of the growth curve was detected at obstetric ultrasonography (US), if the birth weight was in the 10th percentile or less, or if fetal weight estimated with US was below the 10th percentile. Abnormal findings at Doppler US of the umbilical artery and histopathologic examination of specimens from the placenta were recorded. The ADCs in fetuses with placental insufficiency were compared with those in fetuses of the same gestational age without placental insufficiency and tested for normal distribution. The t tests and Pearson correlation coefficients were used to compare these results at 5% levels of significance. RESULTS: Thirty-three of the 102 pregnancies were ultimately categorized as having an insufficient placenta. MR imaging depicted morphologic changes (eg, infarction or bleeding) in 27 fetuses. Placental dysfunction was suspected in 33 fetuses at diffusion-weighted imaging (mean ADC, 146.4 sec/mm(2) ± 10.63 for fetuses with placental insufficiency vs 177.1 sec/mm(2) ± 18.90 for fetuses without placental insufficiency; P < .01, with one false-positive case). The use of diffusion-weighted imaging in addition to US increased sensitivity for the detection of placental insufficiency from 73% to 100%, increased accuracy from 91% to 99%, and preserved specificity at 99%. CONCLUSION: Placental dysfunction associated with growth restriction is associated with restricted diffusion and reduced ADC. A decreased ADC used as an early marker of placental damage might be indicative of pregnancy complications such as IUGR.
Resumo:
Applications of diffusion-weighted (DW) magnetic resonance (MR) imaging outside the brain have gained increasing importance in recent years. Owing to technical improvements in MR imaging units and faster sequences, the need for noninvasive imaging without contrast medium administration, mainly in patients with renal insufficiency, can be met successfully by applying this technique. DW MR imaging is quantified by the apparent diffusion coefficient (ADC), which provides information on diffusion and perfusion simultaneously. By using a biexponential fitting process of the DW MR imaging data, these two entities can be separated, because this type of fitting process can serve as an estimate of both the perfusion fraction and the true diffusion coefficient. DW MR imaging can be applied for functional evaluation of the kidneys in patients with acute or chronic renal failure. Impairment of renal function is accompanied by a decreased ADC. Acute ureteral obstruction leads to perfusion and diffusion changes in the affected kidney, and renal artery stenosis results in a decreased ADC. In patients with pyelonephritis, diffuse or focal changes in signal intensity are seen on the high-b-value images, with increased signal intensity corresponding to low signal intensity on the ADC map. The feasibility and reproducibility of DW MR imaging in patients with transplanted kidneys have already been demonstrated, and initial results seem to be promising for the assessment of allograft deterioration. Overall, performance of renal DW MR imaging, presuming that measurements are of high quality, will further boost this modality, particularly for early detection of diffuse renal conditions, as well as more accurate characterization of focal renal lesions.