22 resultados para Negative Selection Algorithm

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used the yeast three-hybrid system in a positive selection for mutants of the human histone hairpin-binding protein (HBP) capable of interacting with non-canonical hairpins and in a negative selection for loss-of-binding mutants. Interestingly, all mutations from the positive selection are located in the N- and C-terminal regions flanking a minimal RNA-binding domain (RBD) previously defined between amino acids 126 and 198. Further, in vitro binding studies demonstrate that the RBD, which shows no obvious similarity to other RNA-binding motifs, has a relaxed sequence specificity compared to full-length HBP, allowing it to bind to mutant hairpin RNAs not normally found in histone genes. These findings indicate that the sequences flanking the RBD are important for restricting binding to the highly conserved histone hairpin structure. Among the loss-of-binding mutations, about half are nonsense mutations distributed throughout the N-terminal part and the RBD whereas the other half are missense mutations restricted to the RBD. Whereas the nonsense mutations permit a more precise definition of the C-terminal border of the RBD, the missense mutations identify critical residues for RNA binding within the RBD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In clinical practice, traditional X-ray radiography is widely used, and knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic approach for landmark detection and shape segmentation of both pelvis and femur in conventional AP X-ray images. Our approach is based on the framework of landmark detection via Random Forest (RF) regression and shape regularization via hierarchical sparse shape composition. We propose a visual feature FL-HoG (Flexible- Level Histogram of Oriented Gradients) and a feature selection algorithm based on trace radio optimization to improve the robustness and the efficacy of RF-based landmark detection. The landmark detection result is then used in a hierarchical sparse shape composition framework for shape regularization. Finally, the extracted shape contour is fine-tuned by a post-processing step based on low level image features. The experimental results demonstrate that our feature selection algorithm reduces the feature dimension in a factor of 40 and improves both training and test efficiency. Further experiments conducted on 436 clinical AP pelvis X-rays show that our approach achieves an average point-to-curve error around 1.2 mm for femur and 1.9 mm for pelvis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction of developing thymocytes with peptide-MHC complexes on thymic antigen presenting cells (APC) is crucial for T cell development, both for positive selection of "useful" thymocytes as well as negative selection of autoreactive thymocytes to prevent autoimmunity. The peptides presented on MHC II molecules are generated by lysosomal proteases such as the cathepsins. At the same time, lysosomal proteases will also destroy other potential T cell epitopes from self-antigens. This will lead to a lack of presentation on negatively selecting thymic antigen presenting cells and consequently, escape of autoreactive T cells recognizing these epitopes. In order to understand the processes that govern generation or destruction of self-epitopes in thymic APC, we studied the antigen processing machinery and epitope processing in the human thymus. We find that each type of thymic APC expresses a different signature of lysosomal proteases, providing indirect evidence that positive and negative selection of CD4(+) T cells might occur on different sets of peptides, in analogy to what has been proposed for CD8(+) T cells. We also find that myeloid dendritic cells (DC) are more efficient in processing autoantigen than plasmacytoid DC. In addition, we observed that cathepsin S plays a central role in processing of the autoantigens myelin basic protein and proinsulin in thymic dendritic cells. Cathepsin S destroyed a number of known T cell epitopes, which would be expected to result in lack of presentation and consequently, escape of autoreactive T cells. Cathepsin S therefore appears to be an important factor that influences selection of autoreactive T cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The arginine-vasopressin 1a receptor has been identified as a key determinant for social behaviour in Microtus voles, humans and other mammals. Nevertheless, the genetic bases of complex phenotypic traits like differences in social and mating behaviour among species and individuals remain largely unknown. Contrary to previous studies focusing on differences in the promotor region of the gene, we investigate here the level of functional variation in the coding region (exon 1) of this locus. RESULTS: We detected high sequence diversity between higher mammalian taxa as well as between species of the genus Microtus. This includes length variation and radical amino acid changes, as well as the presence of distinct protein variants within individuals. Additionally, negative selection prevails on most parts of the first exon of the arginine-vasopressin receptor 1a (avpr1a) gene but it contains regions with higher rates of change that harbour positively selected sites. Synonymous and non-synonymous substitution rates in the avpr1a gene are not exceptional compared to other genes, but they exceed those found in related hormone receptors with similar functions. DISCUSSION: These results stress the importance of considering variation in the coding sequence of avpr1a in regards to associations with life history traits (e.g. social behaviour, mating system, habitat requirements) of voles, other mammals and humans in particular.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

• Premise of the study: Because not all plant species will be able to move in response to global warming, adaptive evolution matters largely for plant persistence. As prerequisites for adaptive evolution, genetic variation in and selection on phenotypic traits are needed, but these aspects have not been studied in tropical species. We studied how plants respond to transplantation to different elevations on Mt. Kilimanjaro, Tanzania, and whether there is quantitative genetic (among-seed family) variation in and selection on life-history traits and their phenotypic plasticity to the different environments. • Methods: We reciprocally transplanted seed families of 15 common tropical, herbaceous species of the montane and savanna vegetation zone at Mt. Kilimanjaro to a watered experimental garden in the montane (1450 m) and in the savanna (880 m) zone at the mountain’s slope and measured performance, reproductive, and phenological traits. • Results: Plants generally performed worse in the savanna garden, indicating that the savanna climate was more stressful and thus that plants may suffer from future climate warming. We found significant quantitative genetic variation in all measured performance and reproductive traits in both gardens and for several measures of phenotypic plasticity in response to elevational transplantation. Moreover, we found positive selection on traits at low and intermediate trait values levelling to neutral or negative selection at high values. • Conclusions: We conclude that common plants at Mt. Kilimanjaro express quantitative genetic variation in fitness-relevant traits and in their plasticities, suggesting potential to adapt evolutionarily to future climate warming and increased temperature variability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although porcine circovirus type 2 (PCV2)-associated diseases have been evaluated for known immune evasion strategies, the pathogenicity of these viruses remained concealed for decades. Surprisingly, the same viruses that cause panzootics in livestock are widespread in young, unaffected animals. Recently, evidence has emerged that circovirus-like viruses are also linked to complex diseases in humans, including children. We detected PCV2 genome-carrying cells in fetal pig thymi. To elucidate virus pathogenicity, we developed a new pig infection model by in vivo transfection of recombinant PCV2 and the immunosuppressant cofactor cyclosporine A. Using flow cytometry, immunofluorescence and fluorescence in situ hybridization, we found evidence that PCV2 dictates positive and negative selection of maturing T cells in the thymus. We show for the first time that PCV2-infected cells reside at the corticomedullary junction of the thymus. In diseased animals, we found polyclonal deletion of single positive cells (SPs) that may result from a loss of major histocompatibility complex class-II expression at the corticomedullary junction. The percentage of PCV2 antigen-presenting cells correlated with the degree of viremia and, in turn, the severity of the defect in thymocyte maturation. Moreover, the reversed T-cell receptor/CD4-coreceptor expression dichotomy on thymocytes at the CD4(+)CD8(interm) and CD4SP cell stage is viremia-dependent, resulting in a specific hypo-responsiveness of T-helper cells. We compare our results with the only other better-studied member of Circoviridae, chicken anemia virus. Our data show that PCV2 infection leads to thymocyte selection dysregulation, adding a valuable dimension to our understanding of virus pathogenicity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antigenic variation of the intestinal protozoan parasite Giardia lamblia is caused by an exchange of the parasite's variant surface protein (VSP) coat. Many investigations on antigenic variation were performed with G. lamblia clone GS/M-83-H7 which produces surface antigen VSP H7. To generate novel information on giardial vsp gene transcription, vsp RNA levels were assessed by quantitative reverse transcription-(RT)-PCR in both axenic VSP H7-type trophozoites and subvariants obtained after negative selection of GS/M-83-H7 trophozoites by treatment with a cytotoxic, VSP H7-specific monoclonal antibody. Our investigation was not restricted to the assessment of the sense vsp transcript levels but also included an approach aimed at the detection of complementary antisense vsp transcripts within the two trophozoite populations. We found that sense vsp H7 RNA predominated in VSP H7-type trophozoites while sense RNA from only one (vsp IVg) of 8 subvariant vsp genes totally analysed predominated in subvariant-type trophozoites. Interestingly, the two trophozoite populations exhibited a similar relative distribution regarding the vsp H7 and vsp IVg antisense RNA molecules. An analogous sense versus antisense RNA pattern was also observed when the transcripts of gene cwp 1 (encoding cyst wall protein 1) were investigated. Here, both types of RNA molecules only appeared after cwp 1 had been induced through in vitro encystation of the parasite. These findings for the first time demonstrated that giardial antisense RNA production did not occur in a constitutive manner but was directly linked to complementary sense RNA production after activation of the respective gene systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the trauma surgeons' daily challenges is the balancing act between negative laparotomy and missed abdominal injury. We opted to characterize the indications that prompted a negative trauma exploratory laparotomy and the rate of missed abdominal injuries in an effort to optimize patient selection for laparotomy. At the Los Angeles County + University of Southern California Medical Center, negative laparotomies and missed injuries are consecutively captured and reviewed at the weekly mortality + morbidity (MM) conferences. All written reports of the MM meetings from January 2003 to December 2008 were reviewed to identify all patients who underwent a negative laparotomy or a laparotomy as a result of an initially missed abdominal injury. Over the 6-year study period, a total of 1871 laparotomies were performed, of which 73 (3.9%) were negative. The rate of missed injuries requiring subsequent laparotomy was 1.3 per cent (25 of 1871). The negative laparotomy rate and the rate of missed injuries did not vary significantly during the study period (2.8 to 4.7%, P = 0.875, and 0.7 to 2.9%, P = 0.689). Penetrating mechanisms accounted for the majority of negative laparotomies (58.9%). The primary indication for negative laparotomy was peritonitis (54.8%) followed by hypotension (28.8%) and suspicious computed tomographic scan findings (27.4%). The complication rate after negative laparotomy was 14.5 per cent, and of these, 10.1 per cent were directly related to the procedure. A low but steady rate of negative laparotomies and missed abdominal injuries after trauma remains. Negative laparotomies and missed abdominal injuries when they occur are still associated with significant complication rates and a prolonged length of stay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The T-cell-mediated immune response exhibits a crucial function in the control of the intrahepatic proliferation of Echinococcus multilocularis larvae in mice and humans, both being natural intermediate hosts of the parasite. Antigen B (AgB), a metabolized Echinococcus spp. lipoprotein, contributes to the modulation of the T-cell immune response, and distinct sites of the corresponding AgB1, AgB3 and AgB4 genes were shown to be under positive selection pressure. Since several AgB gene variants are present in a single Echinococcus metacestode, we used secondary E. multilocularis infections in BALB/c and in athymic nude mice (devoid of T-cell responses) to analyze the effect of the cellular immune response on the expression and diversity of EmAgB1-EmAgB4 genes. We demonstrated hereby that EmAgB transcripts were less abundant in nude mice during the early phase of infection (at one month post-infection), and that EmAgB2 is simultaneously down-regulated when compared to the other three genes. A negative relationship exists between the level of transcription and diversity of EmAgB genes. Moreover, no excess of non-synonymous substitutions was found among the distinct EmAgB alleles from a single host. Together, these results pointed to the effect of purifying selection, which seemed to eliminate the detrimental AgB variants generated during the development of the metacestode within the peritoneal cavity of its intermediate host.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of mutations that cause isolated GH deficiency type II (IGHD II) affect splicing of GH-1 transcripts and produce a dominant-negative GH isoform lacking exon 3 resulting in a 17.5-kDa isoform, which further leads to disruption of the GH secretory pathway. A clinical variability in the severity of the IGHD II phenotype depending on the GH-1 gene alteration has been reported, and in vitro and transgenic animal data suggest that the onset and severity of the phenotype relates to the proportion of 17.5-kDa produced. The removal of GH in IGHD creates a positive feedback loop driving more GH expression, which may itself increase 17.5-kDa isoform productions from alternate splice sites in the mutated GH-1 allele. In this study, we aimed to test this idea by comparing the impact of stimulated expression by glucocorticoids on the production of different GH isoforms from wild-type (wt) and mutant GH-1 genes, relying on the glucocorticoid regulatory element within intron 1 in the GH-1 gene. AtT-20 cells were transfected with wt-GH or mutated GH-1 variants (5'IVS-3 + 2-bp T->C; 5'IVS-3 + 6 bp T->C; ISEm1: IVS-3 + 28 G->A) known to cause clinical IGHD II of varying severity. Cells were stimulated with 1 and 10 mum dexamethasone (DEX) for 24 h, after which the relative amounts of GH-1 splice variants were determined by semiquantitative and quantitative (TaqMan) RT-PCR. In the absence of DEX, only around 1% wt-GH-1 transcripts were the 17.5-kDa isoform, whereas the three mutant GH-1 variants produced 29, 39, and 78% of the 17.5-kDa isoform. DEX stimulated total GH-1 gene transcription from all constructs. Notably, however, DEX increased the amount of 17.5-kDa GH isoform relative to the 22- and 20-kDa isoforms produced from the mutated GH-1 variants, but not from wt-GH-1. This DEX-induced enhancement of 17.5-kDa GH isoform production, up to 100% in the most severe case, was completely blocked by the addition of RU486. In other studies, we measured cell proliferation rates, annexin V staining, and DNA fragmentation in cells transfected with the same GH-1 constructs. The results showed that that the 5'IVS-3 + 2-bp GH-1 gene mutation had a more severe impact on those measures than the splice site mutations within 5'IVS-3 + 6 bp or ISE +28, in line with the clinical severity observed with these mutations. Our findings that the proportion of 17.5-kDa produced from mutant GH-1 alleles increases with increased drive for gene expression may help to explain the variable onset progression, and severity observed in IGHD II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ninety strains of a collection of well-identified clinical isolates of gram-negative nonfermentative rods collected over a period of 5 years were evaluated using the new colorimetric VITEK 2 card. The VITEK 2 colorimetric system identified 53 (59%) of the isolates to the species level and 9 (10%) to the genus level; 28 (31%) isolates were misidentified. An algorithm combining the colorimetric VITEK 2 card and 16S rRNA gene sequencing for adequate identification of gram-negative nonfermentative rods was developed. According to this algorithm, any identification by the colorimetric VITEK 2 card other than Achromobacter xylosoxidans, Acinetobacter sp., Burkholderia cepacia complex, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia should be subjected to 16S rRNA gene sequencing when accurate identification of nonfermentative rods is of concern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to significantly reduce these interpolation errors. The accuracy of the new algorithm was tested on a series of x-ray CT-images (head and neck, lung, pelvis). The new algorithm significantly improves the accuracy of the sampled images in terms of the mean square error and a quality index introduced by Wang and Bovik (2002 IEEE Signal Process. Lett. 9 81-4).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: MHC-I down-regulation was described in foetal liver progenitors, and two different subsets of adult bone marrow derived stem cells. These cells, namely, MHC-I-/Thy1+ bone marrow derived liver stem cells (BMDLSC) and the multipotent adult progenitors (MAPC) differentiated into functioning hepatocytes. The aim of this paper was to characterize the MHC-I negative bone marrow compartment as it pertains to BMDLSC and MAPC. MATERIAL/METHODS: We performed multiparameter flow-cytometry analyses of the MHC-I negative compartment using hematopoietic (CD45, Ter119), and stem cell markers (Thy1.2, c-Kit, IL-3R, CD34) in adult mice. RESULTS: When analysing CD45 and Ter119 expression, the MHC-I negative bone marrow compartment divides into four sub-populations: 1. CD45-/Ter119+: 86.0+/-4.4%; 2. CD45+/Ter119+: 0.2+/-0.1%; 3. CD45+/Ter119-: 11.6+/-3.0%; 4. CD45-/Ter119-: 2.0+/-2.1%. Stem cells markers were only expressed on MHC-I negative/ CD45+/Ter119- cells. In vivo, MAPC (Ter119-/CD45- cells) are composed of MHC-I negative (24%) and MHC-I positive cells and do not express any of the stem cell markers tested. CONCLUSIONS: In conclusion, mouse BMDLSC and MAPC are two distinct stem cell populations. Down-regulation of MHC-I was the only common characteristic found between BMDLSC and MAPC suggesting that selection of MHC-I negative cells might represent an efficient strategy to enrich for bone marrow stem cells with liver developmental potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES To determine the antibiotic resistance and fingerprint profiles of methicillin-resistant coagulase-negative staphylococci (MRCoNS) from animal infections among different practices and examine the history of antibiotic treatment. METHODS Isolates were identified by mass spectrometry and tested for antimicrobial resistance by broth dilution, microarrays and sequence analysis of the topoisomerases. Diversity was assessed by PFGE, icaA PCR and staphylococcal cassette chromosome mec (SCCmec), arginine catabolic mobile element (ACME) and multilocus sequence typing. Clinical records were examined retrospectively. RESULTS MRCoNS were identified as Staphylococcus epidermidis (n=20), Staphylococcus haemolyticus (n=17), Staphylococcus hominis (n=3), Staphylococcus capitis (n=1), Staphylococcus cohnii (n=1) and Staphylococcus warneri (n=1). PFGE identified one clonal lineage in S. hominis isolates and several in S. haemolyticus and S. epidermidis. Fourteen sequence types were identified in S. epidermidis, with sequence type 2 (ST2) and ST5 being predominant. Ten isolates contained SCCmec IV, seven contained SCCmec V and the others were non-typeable. ACMEs were detected in 11 S. epidermidis isolates. One S. hominis and 10 S. epidermidis isolates were icaA positive. In addition to mecA-mediated β-lactam resistance, the most frequent resistance was to gentamicin/kanamycin [aac(6')-Ie-aph(2')-Ia, aph(3')-III] (n=34), macrolides/lincosamides [erm(C), erm(A), msr, lnu(A)] (n=31), tetracycline [tet(K)] (n=22), streptomycin [str, ant(6)-Ia] (n=20), trimethoprim [dfr(A), dfr(G)] (n=17), sulfamethoxazole (n = 34) and fluoroquinolones [amino acid substitutions in GyrA and GrlA] (n=30). Clinical data suggest selection through multiple antibiotic courses and emphasize the importance of accurate diagnosis and antibiograms. CONCLUSIONS MRCoNS from animal infection sites are genetically heterogeneous multidrug-resistant strains that represent a new challenge in the prevention and therapy of infections in veterinary clinics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Escherichia coli, Salmonella spp. and Acinetobacter spp. are important human pathogens. Serious infections due to these organisms are usually treated with extended-spectrum cephalosporins (ESCs). However, in the past two decades we have faced a rapid increasing of infections and colonization caused by ESC-resistant (ESC-R) isolates due to production of extended-spectrum-β-lactamases (ESBLs), plasmid-mediated AmpCs (pAmpCs) and/or carbapenemase enzymes. This situation limits drastically our therapeutic armamentarium and puts under peril the human health. Animals are considered as potential reservoirs of multidrug-resistant (MDR) Gram-negative organisms. The massive and indiscriminate use of antibiotics in veterinary medicine has contributed to the selection of ESC-R E. coli, ESC-R Salmonella spp. and, to less extent, MDR Acinetobacter spp. among animals, food, and environment. This complex scenario is responsible for the expansion of these MDR organisms which may have life-threatening clinical significance. Nowadays, the prevalence of food-producing animals carrying ESC-R E. coli and ESC-R Salmonella (especially those producing CTX-M-type ESBLs and the CMY-2 pAmpC) has reached worryingly high values. More recently, the appearance of carbapenem-resistant isolates (i.e., VIM-1-producing Enterobacteriaceae and NDM-1 or OXA-23-producing Acinetobacter spp.) in livestock has even drawn greater concerns. In this review, we describe the aspects related to the spread of the above MDR organisms among pigs, cattle, and poultry, focusing on epidemiology, molecular mechanisms of resistance, impact of antibiotic use, and strategies to contain the overall problem. The link and the impact of ESC-R organisms of livestock origin for the human scenario are also discussed.