45 resultados para Near infrared spectral(NIRS)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Introduction: As a previous study revealed, arts speech therapy (AST) affects cardiorespiratory interaction [1]. The aim of the present study was to investigate whether AST also has effects on brain oxygenation and hemodynamics measured non-invasively using near-infrared spectroscopy (NIRS). Material and methods: NIRS measurements were performed on 17 subjects (8 men and 9 women, mean age: 35.6 ± 12.7 y) during AST. Each measurement lasted 35 min, comprising 8 min pre-baseline, 10 min recitation and 20 min post-baseline. For each subject, measurements were performed for three different AST recitation tasks (recitation of alliterative, hexameter and prose verse). Relative concentration changes of oxyhemoglobin (Δ[O2Hb]) and deoxyhemoglobin (Δ[HHb]) as well as the tissue oxygenation index (TOI) were measured using a Hamamatsu NIRO300 NIRS device and a sensor placed on the subjects forehead. Movement artifacts were removed using a novel method [2]. Statistical analysis (Wilcoxon test) was applied to the data to investigate (i) if the recitation causes changes in the median values and/or in the Mayer wave power spectral density (MW-PSD, range: 0.07–0.13 Hz) of Δ[O2Hb], Δ[HHb] or TOI, and (ii) if these changes vary between the 3 recitation forms. Results: For all three recitation styles a significant (p < 0.05) decrease in Δ[O2Hb] and TOI was found, indicating a decrease in blood flow. These decreases did not vary significantly between the three styles. MW-PSD increased significantly for Δ[O2Hb] when reciting the hexameter and prose verse, and for Δ[HHb] and TOI when reciting alliterations and hexameter, representing an increase in Mayer waves. The MW-PSD increase for Δ[O2Hb] was significantly larger for the hexameter verse compared to alliterative and prose verse Conclusion: The study showed that AST affects brain hemodynamics (oxygenation, blood flow and Mayer waves). Recitation caused a significant decrease in cerebral blood flow for all recitation styles as well as an increase in Mayer waves, particularly for the hexameter, which may indicate a sympathetic activation. References 1. D. Cysarz, D. von Bonin, H. Lackner, P. Heusser, M. Moser, H. Bettermann. Am J Physiol Heart Circ Physiol, 287 (2) (2004), pp. H579–H587 2. F. Scholkmann, S. Spichtig, T. Muehlemann, M. Wolf. Physiol Meas, 31 (5) (2010), pp. 649–662
Resumo:
Arts speech therapy (AST) is a therapeutic method within complementary medicine and has been practiced for decades for various medical conditions. It comprises listening and the recitation of different forms of speech exercises under the guidance of a licensed speech therapist. The aim of our study was to noninvasively investigate whether different types of recitation influence hemodynamics and oxygenation in the brain and skeletal leg muscle using near-infrared spectroscopy (NIRS). Seventeen healthy volunteers (eight men and nine women, mean age ± standard deviation 35.6 ± 12.7 years) were enrolled in the study. Each subject was measured three times on different days with the different types of recitation: hexameter, alliteration, and prose verse. Before, during, and after recitation, relative concentration changes of oxyhemoglobin (Δ[O2Hb]), deoxyhemoglobin (Δ[HHb]), total hemoglobin (Δ[tHb]), and tissue oxygenation saturation (StO2) were measured in the brain and skeletal leg muscle using a NIRS device. The study was performed with a randomized crossover design. Significant concentration changes were found during recitation of all verses, with mainly a decrease in Δ[O2Hb] and ΔStO2 in the brain, and an increase in Δ[O2Hb] and Δ[tHb] in the leg muscle during recitation. After the recitations, significant changes were mainly increases of Δ[HHb] and Δ[tHb] in the calf muscle. The Mayer wave spectral power (MWP) was also significantly affected, i.e., mainly the MWP of the Δ[O2Hb] and Δ[tHb] increased in the brain during recitation of hexameter and prose verse. The changes in MWP were also significantly different between hexameter and alliteration, and hexameter and prose. Possible physiological explanations for these changes are discussed. A probable reason is a different effect of recitations on the sympathetic nervous system. In conclusion, these changes show that AST has relevant effects on the hemodynamics and oxygenation of the brain and muscle.
Resumo:
Rapid bedside determination of cerebral blood pressure autoregulation (AR) may improve clinical utility. We tested the hypothesis that cerebral Hb oxygenation (HbDiff) and cerebral Hb volume (HbTotal) measured by near-infrared spectroscopy (NIRS) would correlate with cerebral blood flow (CBF) after single dose phenylephrine (PE). Critically ill patients requiring artificial ventilation and arterial lines were eligible. During rapid blood pressure rise induced by i.v. PE bolus, ΔHbDiff and ΔHbTotal were calculated by subtracting values at baseline (normotension) from values at peak blood pressure elevation (hypertension). With the aid of NIRS and bolus injection of indocyanine green, relative measures of CBF, called blood flow index (BFI), were determined during normotension and during hypertension. BFI during hypertension was expressed as percentage from BFI during normotension (BFI%). Autoregulation indices (ARIs) were calculated by dividing BFI%, ΔHbDiff, and ΔHbTotal by the concomitant change in blood pressure. In 24 patients (11 newborns and 13 children), significant correlations between BFI% and ΔHbDiff (or ΔHbTotal) were found. In addition, the associations between Hb-based ARI and BFI%-based ARI were significant with correlation coefficients of 0.73 (or 0.72). Rapid determination of dynamic AR with the aid of cerebral Hb signals and PE bolus seems to be reliable.
Resumo:
Abstract: Near-infrared spectroscopy (NIRS) enables the non-invasive measurement of changes in hemodynamics and oxygenation in tissue. Changes in light-coupling due to movement of the subject can cause movement artifacts (MAs) in the recorded signals. Several methods have been developed so far that facilitate the detection and reduction of MAs in the data. However, due to fixed parameter values (e.g., global threshold) none of these methods are perfectly suitable for long-term (i.e., hours) recordings or were not time-effective when applied to large datasets. We aimed to overcome these limitations by automation, i.e., data adaptive thresholding specifically designed for long-term measurements, and by introducing a stable long-term signal reconstruction. Our new technique (“acceleration-based movement artifact reduction algorithm”, AMARA) is based on combining two methods: the “movement artifact reduction algorithm” (MARA, Scholkmann et al. Phys. Meas. 2010, 31, 649–662), and the “accelerometer-based motion artifact removal” (ABAMAR, Virtanen et al. J. Biomed. Opt. 2011, 16, 087005). We describe AMARA in detail and report about successful validation of the algorithm using empirical NIRS data, measured over the prefrontal cortex in adolescents during sleep. In addition, we compared the performance of AMARA to that of MARA and ABAMAR based on validation data.
Resumo:
Over the last ~20 years, soil spectral libraries storing near-infrared reflectance (NIR) spectra from diverse soil samples have been built for many places, since almost 10 years also for Tajikistan. Many calibration approaches have been reported and used for prediction from large and heterogeneous libraries, but most are hampered by the high diversity of the soils, where the mineral background is heavily influencing spectral features. In such cases, local learning strategies have the advantage of building locally adapted calibrations, which can deal better with nonlinearities. Therefore, it was our major aim to identify the most efficient approach to develop an accurate and stable locally weigthed calibration model using a spectral library compiled over the past years. Keywords: Tajikistan, Near-Infrared spectroscopy (NIRS), soil organic carbon, locally weighted regression, regional and local spectral library.
Resumo:
Introduction In several studies, we found that during guided rhythmic speech exercises, a decrease in cerebral hemodynamics and oxygenation occurred as the result of a decrease in the partial pressure of carbon dioxide in the arterial blood (PaCO2) during speaking. To further explore the effect of PaCO2 variations on cerebral hemodynamics and oxygenation, the aim of the present study was to investigate the impact of spoken, inner and heard speech tasks on these parameters. Material and Methods Speech tasks included recitation or inner recitation or listening to hexameter, alliteration, prose, or performing mental arithmetic. The following physiological parameters were measured: tissue oxygen saturation (StO2) and absolute concentrations of oxyhemoglobin, deoxyhemoglobin, total hemoglobin (over the left and right anterior prefrontal cortex, using an ISS OxiplexTS frequency domain near-infrared spectrometer) and end-tidal CO2 (PETCO2; using Nellcor N1000 and Datex NORMOCAP capnographs). Statistical analysis was applied to the differences between baseline, 2 tasks, and 3 post-baseline periods. Data of 3 studies with 24, 7 and 29 healthy subjects, respectively, were combined, and linear regression analyses were calculated. Results Linear regression analyses revealed significant relations between changes in oxyhemoglobin, deoxyhemoglobin, total hemoglobin or StO2 and the participants’ age, the baseline PETCO2 or certain speech tasks. While hexameter verses affected changes during the tasks, alliteration verses only affected changes during the recovery phase. Discussion and Conclusion The observed effects in hemodynamics and oxygenation indicate a combination of neurovascular coupling (increased neuronal activity leading to an increase in the cerebral metabolic rate of oxygen resulting in an increase in cerebral flood flow/volume) and CO2 reactivity (increased breathing during speech tasks causing a decrease in PaCO2 leading to vasoconstriction and decrease in cerebral blood flow). The neurovascular coupling characteristics are task-dependent. References Scholkmann F, Gerber U, Wolf M, Wolf U. End-tidal CO2: An important parameter for a correct interpretation in functional brain studies using speech tasks. Neuroimage 2013;66:71-79. Scholkmann F, Wolf M, Wolf U. The effect of inner speech on arterial CO2, cerebral hemodynamics and oxygenation – A functional NIRS study. Adv Exp Med Biol 2013;789:81-87.
Resumo:
Background The goal when resuscitating trauma patients is to achieve adequate tissue perfusion. One parameter of tissue perfusion is tissue oxygen saturation (StO2), as measured by near infrared spectroscopy. Using a commercially available device, we investigated whether clinically relevant blood loss of 500 ml in healthy volunteers can be detected by changes in StO2 after a standardized ischemic event. Methods We performed occlusion of the brachial artery for 3 minutes in 20 healthy female blood donors before and after blood donation. StO2 and total oxygenated tissue hemoglobin (O2Hb) were measured continuously at the thenar eminence. 10 healthy volunteers were assessed in the same way, to examine whether repeated vascular occlusion without blood donation exhibits time dependent effects. Results Blood donation caused a substantial decrease in systolic blood pressure, but did not affect resting StO2 and O2Hb values. No changes were measured in the blood donor group in the reaction to the vascular occlusion test, but in the control group there was an increase in the O2Hb rate of recovery during the reperfusion phase. Conclusion StO2 measured at the thenar eminence seems to be insensitive to blood loss of 500 ml in this setting. Probably blood loss greater than this might lead to detectable changes guiding the treating physician. The exact cut off for detectable changes and the time effect on repeated vascular occlusion tests should be explored further. Until now no such data exist.
Resumo:
OBJECTIVE: Perforating arteries are commonly involved during the surgical dissection and clipping of intracranial aneurysms. Occlusion of perforating arteries is responsible for ischemic infarction and poor outcome. The goal of this study is to describe the usefulness of near-infrared indocyanine green videoangiography (ICGA) for the intraoperative assessment of blood flow in perforating arteries that are visible in the surgical field during clipping of intracranial aneurysms. In addition, we analyzed the incidence of perforating vessels involved during the aneurysm surgery and the incidence of ischemic infarct caused by compromised small arteries. METHODS: Sixty patients with 64 aneurysms were surgically treated and prospectively included in this study. Intraoperative ICGA was performed using a surgical microscope (Carl Zeiss Co., Oberkochen, Germany) with integrated ICGA technology. The presence and involvement of perforating arteries were analyzed in the microsurgical field during surgical dissection and clip application. Assessment of vascular patency after clipping was also investigated. Only those small arteries that were not visible on preoperative digital subtraction angiography were considered for analysis. RESULTS: The ICGA was able to visualize flow in all patients in whom perforating vessels were found in the microscope field. Among 36 patients whose perforating vessels were visible on ICGA, 11 (30%) presented a close relation between the aneurysm and perforating arteries. In one (9%) of these 11 patients, ICGA showed occlusion of a P1 perforating artery after clip application, which led to immediate correction of the clip confirmed by immediate reestablishment of flow visible with ICGA without clinical consequences. Four patients (6.7%) presented with postoperative perforating artery infarct, three of whom had perforating arteries that were not visible or distant from the aneurysm. CONCLUSION: The involvement of perforating arteries during clip application for aneurysm occlusion is a usual finding. Intraoperative ICGA may provide visual information with regard to the patency of these small vessels.
Resumo:
The study is based on experimental work conducted in alpine snow. We made microwave radiometric and near-infrared reflectance measurements of snow slabs under different experimental conditions. We used an empirical relation to link near-infrared reflectance of snow to the specific surface area (SSA), and converted the SSA into the correlation length. From the measurements of snow radiances at 21 and 35 GHz , we derived the microwave scattering coefficient by inverting two coupled radiative transfer models (the sandwich and six-flux model). The correlation lengths found are in the same range as those determined in the literature using cold laboratory work. The technique shows great potential in the determination of the snow correlation length under field conditions.