26 resultados para Nd : YAG ceramic laser
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Custom modes at a wavelength of 1064 nm were generated with a deformable mirror. The required surface deformations of the adaptive mirror were calculated with the Collins integral written in a matrix formalism. The appropriate size and shape of the actuators as well as the needed stroke were determined to ensure that the surface of the controllable mirror matches the phase front of the custom modes. A semipassive bimorph adaptive mirror with five concentric ring-shaped actuators and one defocus actuator was manufactured and characterised. The surface deformation was modelled with the response functions of the adaptive mirror in terms of an expansion with Zernike polynomials. In the experiments the Nd:YAG laser crystal was quasi-CW pumped to avoid thermally induced distortions of the phase front. The adaptive mirror allows to switch between a super-Gaussian mode, a doughnut mode, a Hermite-Gaussian fundamental beam, multi-mode operation or no oscillation in real time during laser operation.
Resumo:
BACKGROUND Telangiectasias of the lower extremities are very common. There are no blinded, randomized, controlled clinical trials comparing laser modalities with the gold standard sclerotherapy, while the few available studies encompass small patients cohorts. OBJECTIVE This prospective, randomized, open-label trial compares the efficacy of sclerotherapy with polidocanol vs. long-pulsed neodymium-doped yttrium aluminium garnet (Nd:YAG) laser in the treatment of leg telangiectasias. PATIENTS AND METHODS Fifty-six female patients with primary leg telangiectasias and reticular veins (C1A or S Ep AS 1 PN ) were included in the study. One leg was randomly assigned to get treatment with the multiple synchronized long-pulsed Nd:YAG laser, while the other received foam sclerotherapy with polidocanol 0.5%. The patients were treated in two sessions at intervals of 6 weeks. The patients were evaluated by the handling physician after 6 weeks and 6 months. Two investigators assessed blindly at the end of the study the photographs for clearing of the vessels using a six-point scale from 1 (no change) to 6 (100% cleared). Patients reported about pain sensation and outcome satisfaction. RESULTS According to the handling dermatologist, at the last follow-up, there was an improvement of 30-40% with a median of 3 (IQR 2) and a good improvement of 50-70% with a median of 4 (IQR 2) after laser treatment and sclerotherapy respectively. In contrast, according to the blinded investigators, there was a median of 5 (IQR 1) with a very good improvement of >70% after both therapies. Improvement was achieved more quickly by sclerotherapy, although at the last follow-up visit there was no difference in clearance between the two groups as assessed by the blinded experts (P-value 0.84). The degree of patient's satisfaction was very good and similar with both therapeutic approaches. There was a significant difference (P-value 0.003) regarding pain perception between the types of therapy. Laser was felt more painful than sclerotherapy. CONCLUSION Telangiectasias of the lower extremities can be successfully treated with either synchronized long-pulsed Nd:YAG laser or sclerotherapy. The 1064-nm long-pulsed Nd:YAG laser is associated with more pain and is suitable especially in case of needle phobia, allergy to sclerosants and in presence of small veins with telangiectatic matting, while sclerotherapy can also treat the feeder veins.
Resumo:
OBJECTIVE Fractured endodontic instruments inhibit optimal cleaning and filling of dental root canals, which may result in a less favorable prognosis for the tooth. Several techniques are available to remove fractured instruments; however, healthy tooth substance often must be destroyed in the process. This study was intended to evaluate Nd:YAG laser treatment as a method to remove fractured stainless steel instruments without destroying healthy tooth substance. METHOD AND MATERIALS Stainless steel endodontic instruments were fractured in 33 unprocessed root canals of mandibular central and lateral incisors and premolars in vitro. A brass tube charged with solder was placed at the coronal end of the fractured instrument and laser energy was used to melt the solder, connecting the fractured instrument with the brass tube. The success rates of connecting and removal of fractured instruments from the root channel were recorded for each case. RESULTS Connecting was achieved in every case in which more than 1.5 mm of the fractured instrument was tangible (22 out of 22). In cases where less than 1.5 mm was tangible, the rate for successful connection decreased to 4 out of 11 (36.4%). Fractured endodontic instruments were removed successfully in 17 out of 22 cases (77.3%) in which more than 1.5 mm was tangible. If less than 1.5 mm was tangible, the removal success rate decreased to 3 out of 11 cases (27.3%). CONCLUSION Our data support Nd:YAG laser-mediated connecting of a brass tube to a fractured endodontic instrument as a feasible and tissue conserving removal approach when more than 1.5 mm of the instrument is tangible.
Resumo:
OBJECTIVE Thermal Nd:YAG laser energy is well known for the purpose of blood coagulation. However, little is known about the bleeding frequency following laser-assisted oral surgery in patients on coumarin drugs. Therefore, the purpose of this study was to compare retrospectively the frequency of bleeding complications following Nd:YAG laserassisted versus conventional local coagulation of blood in oral surgery. METHOD AND MATERIALS In October 2002, minor oral surgical interventions were found to be indicated in a total of 45 cardiac risk patients. In Group 1, blood coagulation was yielded in 24 patients with a Nd:YAG laser system, whereas in Group 2, treatment was performed in 21 patients with conventional means of local hemostasis. All therapies were performed continuing anticoagulant therapy between November 2002 and March 2003. Clinical data were recorded retrospectively from patient charts in May 2007. RESULTS In both Groups 1 and 2, a total of two bleeding complications were recorded. However, local re-interventions were sufficient for local hemostasis. CONCLUSION These results indicate that Nd:YAG laser-assisted local hemostasis was not able to prevent bleeding complications completely. Within the limitations of this retrospective study it was concluded that in patients with anticoagulant treatment undergoing minor oral surgery, Nd:YAG laser-assisted local hemostasis is not superior to conventional methods of blood coagulation with respect to the frequency of bleeding complications.
Resumo:
The space-qualified design of a miniaturized laser for pulsed operation at a wavelength of 1064 nm and at repetition rates up to 10 Hz is presented. This laser consists of a pair of diode-laser pumped, actively q-switched Nd:YAG rod oscillators hermetically sealed and encapsulated in an environment of dry synthetic air. The system delivers at least 300 million laser pulses with 50 mJ energy and 5 ns pulse width (FWHM). It will be launched in 2017 aboard European Space Agency’s Mercury Planetary Orbiter as part of the BepiColombo Laser Altimeter, which, after a 6-years cruise, will start recording topographic data from orbital altitudes between 400 and 1500 km above Mercury’s surface.
Resumo:
Laser irradiation has numerous favorable characteristics, such as ablation or vaporization, hemostasis, biostimulation (photobiomodulation) and microbial inhibition and destruction, which induce various beneficial therapeutic effects and biological responses. Therefore, the use of lasers is considered effective and suitable for treating a variety of inflammatory and infectious oral conditions. The CO2 , neodymium-doped yttrium-aluminium-garnet (Nd:YAG) and diode lasers have mainly been used for periodontal soft-tissue management. With development of the erbium-doped yttrium-aluminium-garnet (Er:YAG) and erbium, chromium-doped yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers, which can be applied not only on soft tissues but also on dental hard tissues, the application of lasers dramatically expanded from periodontal soft-tissue management to hard-tissue treatment. Currently, various periodontal tissues (such as gingiva, tooth roots and bone tissue), as well as titanium implant surfaces, can be treated with lasers, and a variety of dental laser systems are being employed for the management of periodontal and peri-implant diseases. In periodontics, mechanical therapy has conventionally been the mainstream of treatment; however, complete bacterial eradication and/or optimal wound healing may not be necessarily achieved with conventional mechanical therapy alone. Consequently, in addition to chemotherapy consisting of antibiotics and anti-inflammatory agents, phototherapy using lasers and light-emitting diodes has been gradually integrated with mechanical therapy to enhance subsequent wound healing by achieving thorough debridement, decontamination and tissue stimulation. With increasing evidence of benefits, therapies with low- and high-level lasers play an important role in wound healing/tissue regeneration in the treatment of periodontal and peri-implant diseases. This article discusses the outcomes of laser therapy in soft-tissue management, periodontal nonsurgical and surgical treatment, osseous surgery and peri-implant treatment, focusing on postoperative wound healing of periodontal and peri-implant tissues, based on scientific evidence from currently available basic and clinical studies, as well as on case reports.