9 resultados para Naval Electronic Systems Engineering Activity (U.S.)

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immune system exhibits an enormous complexity. High throughput methods such as the "-omic'' technologies generate vast amounts of data that facilitate dissection of immunological processes at ever finer resolution. Using high-resolution data-driven systems analysis, causal relationships between complex molecular processes and particular immunological phenotypes can be constructed. However, processes in tissues, organs, and the organism itself (so-called higher level processes) also control and regulate the molecular (lower level) processes. Reverse systems engineering approaches, which focus on the examination of the structure, dynamics and control of the immune system, can help to understand the construction principles of the immune system. Such integrative mechanistic models can properly describe, explain, and predict the behavior of the immune system in health and disease by combining both higher and lower level processes. Moving from molecular and cellular levels to a multiscale systems understanding requires the development of methodologies that integrate data from different biological levels into multiscale mechanistic models. In particular, 3D imaging techniques and 4D modeling of the spatiotemporal dynamics of immune processes within lymphoid tissues are central for such integrative approaches. Both dynamic and global organ imaging technologies will be instrumental in facilitating comprehensive multiscale systems immunology analyses as discussed in this review.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to propose a general numerical analysis methodology to evaluate the magnetic resonance imaging (MRI)-safety of active implants. Numerical models based on the finite element (FE) technique were used to estimate if the normal operation of an active device was altered during MRI imaging. An active implanted pump was chosen to illustrate the method. A set of controlled experiments were proposed and performed to validate the numerical model. The calculated induced voltages in the important electronic components of the device showed dependence with the MRI field strength. For the MRI radiofrequency fields, significant induced voltages of up to 20 V were calculated for a 0.3T field-strength MRI. For the 1.5 and 3.0T MRIs, the calculated voltages were insignificant. On the other hand, induced voltages up to 11 V were calculated in the critical electronic components for the 3.0T MRI due to the gradient fields. Values obtained in this work reflect to the worst case situation which is virtually impossible to achieve in normal scanning situations. Since the calculated voltages may be removed by appropriate protection circuits, no critical problems affecting the normal operation of the pump were identified. This study showed that the proposed methodology helps the identification of the possible incompatibilities between active implants and MR imaging, and can be used to aid the design of critical electronic systems to ensure MRI-safety

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maintaining a loyal customer base is challenging for “Deal of the Day” (DoD) platforms. DoD providers market and sell deals on products and services, yet it is the merchants who ultimately deliver those to consumers. Low entry and switching costs drive competition in this market. However, research on the determinants of user loyalty in the DoD context is limited. This study uses Grounded Theory and Structural Equation Modeling to explore the phenomenon of DoD platform loyalty. Particularly, monetary benefits, signal-to-noise ratio, perceived risk, and service friendliness during a merchant encounter emerge as powerful determinants of loyalty in this novel context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social Networking Sites (SNSs) have become extremely popular around the world. They rely on user-generated content to offer engaging experience to its members. Cultural differences may influence the motivation of users to create and share content on SNS. This study adopts the privacy calculus perspective to examine the role of culture in individual self-disclosure decisions. The authors use structural equation modeling and multi-group analysis to investigate this dynamics. The findings reveal the importance of cultural dimensions of individualism and uncertainty avoidance in the cognitive processes of SNS users.