7 resultados para Nature areas

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since 1987, Switzerland’s Federal Inventory of Mire Landscapes of Particular Beauty and National Importance has provided an instrument for the integration of nature conservation and landscape protection. Mires and mire landscape protection are strictly regulated. However, research results show that neither the goals of mire protection nor those of mire landscape protection are being achieved. The reasons for this are manifold and, in particular, have to do with a lack of coordination between the various policy areas that shape mire environments and mire landscapes. There are several key challenges involving different political and administrative levels. At the national level, mechanisms must be devised that enable differentiated regional implementation of national sectoral policies. In the context of cantonal structure planning, regional nature conservation and landscape protection priorities should be established based on existing regional potentials vis-à-vis the natural environment and landscapes (including protected biotopes and landscapes). At the regional level (spanning multiple communes), integrated planning instruments and governance structures should be developed so that implementation of national and cantonal sectoral policies may be harmonized under the umbrella of regional and integrated development plans. These adjustments to Switzerland’s institutional system are necessary to enable far-reaching integration of nature conservation and landscape protection when setting regional policy priorities. This would strengthen the protection of mire landscapes and other integrative instruments such as regional nature parks of national importance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individual analysis of functional Magnetic Resonance Imaging (fMRI) scans requires user-adjustment of the statistical threshold in order to maximize true functional activity and eliminate false positives. In this study, we propose a novel technique that uses radiomic texture analysis (TA) features associated with heterogeneity to predict areas of true functional activity. Scans of 15 right-handed healthy volunteers were analyzed using SPM8. The resulting functional maps were thresholded to optimize visualization of language areas, resulting in 116 regions of interests (ROIs). A board-certified neuroradiologist classified different ROIs into Expected (E) and Non-Expected (NE) based on their anatomical locations. TA was performed using the mean Echo-Planner Imaging (EPI) volume, and 20 rotation-invariant texture features were obtained for each ROI. Using forward stepwise logistic regression, we built a predictive model that discriminated between E and NE areas of functional activity, with a cross-validation AUC and success rate of 79.84% and 80.19% respectively (specificity/sensitivity of 78.34%/82.61%). This study found that radiomic TA of fMRI scans may allow for determination of areas of true functional activity, and thus eliminate clinician bias.