16 resultados para Natural distribution
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Among the coniferous species, Norway spruce (Picea abies (L.) Karst.) is one of the most important trees in Europe both for economic and ecological aspects, with a long tradition of cultivation. It can be a big tree, reaching 50-60 m in height with a straight and regular trunk, particularly used for timber constructions, pulpwood for paper and furniture. This widespread species dominates the Boreal forests in Northern Europe and the subalpine areas of the Alps and Carpathian Mountains. Thanks to its high performances in different site conditions, it can also be found outside its natural distribution on lower elevations in more temperate forests. Norway spruce has been massively planted up to its niche limits, where it is particularly susceptible to heat and drought, due to its shallow root system. For this reason it is expected to be severely affected under global warming conditions. Disturbed and weakened plants can be easily attacked by rot fungi such as Heterobasidion annosum and Armillaria, or by the bark beetles Ips typographus, one of the most destructive spruce forest pests.
Resumo:
Background: Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results: Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (R(ST) = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (R(ST) = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (R(ST) = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m similar to 0.094 - 0.097) in the Volta populations. Conclusions: This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro-geographic scale, and the significant effect of geographic connectivity was detected at micro-geographic scale. The estimated effective population size, the moderate level of dispersal and the rapid temporal change in genetic composition might reflect a potential effect of life history strategy on population dynamics. This hypothesis deserves further investigation. The dynamic pattern revealed at micro-geographic and temporal scales appears important from a genetic resource management as well as from a biodiversity conservation point of view.
Resumo:
29I is one of the major dose-determining nuclides in the safety analysis of deep storage of radioactive waste. Iodine forms anionic species that hardly sorb on the surfaces of common host-rock minerals. Recently, interest has arisen on the role of pyrite, an accessory mineral capable of binding anionic selenium. Whereas the interaction of selenium with pyrite is well documented, corresponding results on iodine sorption are still scarce and controversial. Pyrite is present in argicilleous rocks which are being considered in many countries as potential host rocks for a radioactive waste repository. The uptake of iodide (I−) on natural pyrite was investigated under nearly anoxic conditions (O2 < 5 ppm) over a wide concentration range (10−11–10−3 M total I−) using 125I as the radioactive tracer. Weak but measurable sorption was observed; distribution coefficients (R d) were less than 0.002 m3 kg−1 and decreased with increasing total iodide concentration. Iodide sorption was connected to the presence of oxidized clusters on the pyrite surface, which were presumably formed by reaction with limited amounts of dissolved oxygen. The results obtained indicated that pyrite cannot be considered as an effective scavenger of 129I under the geochemical conditions prevailing in underground radioactive waste geologic storage.
Resumo:
AIM: To investigate the expression of E-cadherin, a major host cell receptor for Listeria monocytogenes (LM) internalin A, in the ruminant nervous system and its putative role in brainstem invasion and intracerebral spread of LM in the natural disease. METHODS: Immunohistochemistry and double immunofluorescence was performed on brains, cranial nerves and ganglia of ruminants with and without natural LM rhombencephalitis using antibodies against E-cadherin, protein gene product 9.5, myelin-associated glycoprotein and LM. RESULTS: In the ruminant brain, E-cadherin is expressed in choroid plexus epithelium, meningothelium and restricted neuropil areas of the medulla, but not in the endothelium. In cranial nerves and ganglia, E-cadherin is expressed in satellite cells and myelinating Schwann cells. Expression does not differ between ruminants with or without listeriosis and does not overlap with the presence of microabscesses in the medulla. LM is observed in phagocytes, axons, Schwann cells, satellite cells and ganglionic neurones. CONCLUSION: Our results support the view that the specific ligand-receptor interaction between LM and host E-cadherin is involved in the neuropathogenesis of ruminant listeriosis. They suggest that oral epithelium and Schwann cells expressing E-cadherin provide a port of entry for free bacteria offering a site of primary intracellular replication, from where the bacterium may invade the axonal compartment by cell-to-cell spread. As E-cadherin expression in the ruminant central nervous system is weak, only very locally restricted and not related to the presence of microabscesses, it is likely that further intracerebral spread is independent of E-cadherin and relies primarily on axonal spread.
Resumo:
AIM: The purpose of this randomized split-mouth clinical trial was to determine the active tactile sensibility between single-tooth implants and opposing natural teeth and to compare it with the tactile sensibility of pairs of natural teeth on the contralateral side in the same mouth (intraindividual comparison). MATERIAL AND METHODS: The hypothesis was that the active tactile sensibilities of the implant side and control side are equivalent. Sixty two subjects (n=36 from Bonn, n=26 from Bern) with single-tooth implants (22 anterior and 40 posterior dental implants) were asked to bite on narrow copper foil strips varying in thickness (5-200 microm) and to decide whether or not they were able to identify a foreign body between their teeth. Active tactile sensibility was defined as the 50% threshold of correct answers estimated by means of the Weibull distribution. RESULTS: The results obtained for the interocclusal perception sensibility differed between subjects far more than they differed between natural teeth and implants in the same individual [implant/natural tooth: 16.7+/-11.3 microm (0.6-53.1 microm); natural tooth/natural tooth: 14.3+/-10.6 microm (0.5-68.2 microm)]. The intraindividual differences only amounted to a mean value of 2.4+/-9.4 microm (-15.1 to 27.5 microm). The result of our statistical calculations showed that the active tactile sensibility of single-tooth implants, both in the anterior and posterior region of the mouth, in combination with a natural opposing tooth is similar to that of pairs of opposing natural teeth (double t-test, equivalence margin: +/-8 microm, P<0.001, power >80%). Hence, the implants could be integrated in the stomatognathic control circuit.
Resumo:
As a species of major interest for aquaculture, the sex determination system (SDS) of Nile tilapia, Oreochromis niloticus, has been widely investigated. In this species, sex determination is considered to be governed by the interactions between a complex system of genetic sex determination factors (GSD) and the influence of temperature (TSD) during a critical period. Previous studies were exclusively carried out on domestic stocks with the genetic and maintenance limitations associated. Given the wide distribution and adaptation potential of the Nile tilapia, we investigated under controlled conditions the sex determination system of natural populations adapted to three extreme thermal regimes: stable extreme environments in Ethiopia, either cold temperatures in a highland lake (Lake Koka), or warm temperatures in hydrothermal springs (Lake Metahara), and an environment with large seasonal variations in Ghana (Kpandu, Lake Volta). The sex ratio analysis was conducted on progenies reared under constant basal (27 degrees C) or high (36 degrees C) temperatures during the 30 days following yolk-sac resorption. Sex ratios of the progenies reared at standard temperature suggest that the three populations share a similar complex GSD system based on a predominant male heterogametic factor with additional influences of polymorphism at this locus and/or action of minor factors. The three populations presented a clear thermosensitivity of sex differentiation, with large variations in the intensity of response depending on the parents. This confirms the presence of genotype-environment interactions in TSD of Nile tilapia. Furthermore the existence of naturally sex-reversed individuals is strongly suggested in two populations (Kpandu and Koka). However, it was not possible here to infer if the sex-inversion resulted from minor genetic factors and/or environmental influences. The present study demonstrated for the first time the conservation of a complex SDS combining polymorphic GSD and TSD components in natural populations of Nile tilapia. We discuss the evolutionary implications of our findings and highlight the importance of field investigations of sex determination. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Floral scents are important information cues used to organize foraging-related tasks in honeybees. The waggle dance, apart from encoding spatial information about food sources, might facilitate the transfer of olfactory information by increasing the dissipation of volatiles brought back by successful foragers. By assuming that food scents are more intensive on specific body parts of returning foragers, i.e., the posterior legs of pollen foragers and mouthparts of nectar foragers, we quantified the interactions between hive mates and foragers during dances advertising different types of food sources. For natural sources, a higher proportion of hive mates contacted the hind legs of pollen dancers (where the pollen loads were located) with their heads compared to non-pollen dancers. On the other hand, the proportion of head-to-head contacts was higher for non-pollen foragers during the waggle runs. When the food scent was manipulated, dancers collecting scented sugar solution had a higher proportion of head-to-head contacts and a lower proportion around their hind legs compared to dancers collecting unscented solution. The presence of food odors did not affect in-hive behaviors of dancers, but it increased the number of trophallaxes in-between waggle runs (i.e., during circle phases). These results suggest that the honeybee dance facilitates the olfactory information transfer between incoming foragers and hive mates, and we propose that excitatory displays in other social insect species serve the same purpose. While recent empirical and theoretical findings suggested that the colony level foraging benefits of the spatial information encoded in the waggle dance vary seasonally and with habitats, the role of the dance as a compound signal not only indicating the presence of a profitable resource but also amplifying the information transfer regarding floral odors may be important under any ecological circumstances.
Resumo:
A systematic comparison has been performed of the morphology and stability of microtubules (MTs) induced by the potent microtubule-stabilizing agents (MSAs) taxol, epothilone B (Epo B), and discodermolide (DDM) under GTP-free conditions. DDM-induced tubulin polymerization occurred significantly faster than that induced by taxol and Epo B. At the same time, tubulin polymers assembled from soluble tubulin by DDM were morphologically distinct (shorter and less ordered) from those induced by either taxol or Epo B, as demonstrated by electron microscopy. Exposure of MSA-induced tubulin polymers to ultrasound revealed the DDM-based polymers to be less stable to this type of physical stress than those formed with either Epo B or taxol. Interestingly, MT assembly in the presence of both DDM and taxol appeared to produce a distinct new type of MT polymer with a mixed morphology between those of DDM- and taxol-induced structures. The observed differences in MT morphology and stability might be related, at least partly, to differences in intramicrotubular tubulin isotype distribution, as DDM showed a different pattern of beta-tubulin isotype usage in the assembly process.
Resumo:
Central Switzerland lies tectonically in an intraplate area and recurrence rates of strong earthquakes exceed the time span covered by historic chronicles. However, many lakes are present in the area that act as natural seismographs: their continuous, datable and high-resolution sediment succession allows extension of the earthquake catalogue to pre-historic times. This study reviews and compiles available data sets and results from more than 10 years of lacustrine palaeoseismological research in lakes of northern and Central Switzerland. The concept of using lacustrine mass-movement event stratigraphy to identify palaeo-earthquakes is showcased by presenting new data and results from Lake Zurich. The Late Glacial to Holocene mass-movement units in this lake document a complex history of varying tectonic and environmental impacts. Results include sedimentary evidence of three major and three minor, simultaneously triggered basin-wide lateral slope failure events interpreted as the fingerprints of palaeoseismic activity. A refined earthquake catalogue, which includes results from previous lake studies, reveals a non-uniform temporal distribution of earthquakes in northern and Central Switzerland. A higher frequency of earthquakes in the Late Glacial and Late Holocene period documents two different phases of neotectonic activity; they are interpreted to be related to isostatic post-glacial rebound and relatively recent (re-)activation of seismogenic zones, respectively. Magnitudes and epicentre reconstructions for the largest identified earthquakes provide evidence for two possible earthquake sources: (i) a source area in the region of the Alpine or Sub-Alpine Front due to release of accumulated north-west/south-east compressional stress related to an active basal thrust beneath the Aar massif; and (ii) a source area beneath the Alpine foreland due to reactivation of deep-seated strike-slip faults. Such activity has been repeatedly observed instrumentally, for example, during the most recent magnitude 4.2 and 3.5 earthquakes of February 2012, near Zug. The combined lacustrine record from northern and Central Switzerland indicates that at least one of these potential sources has been capable of producing magnitude 6.2 to 6.7 events in the past.
Resumo:
Many parasites infect multiple host species. In coevolving host–parasite interactions, theory predicts that parasites should be adapted to locally common hosts, which could lead to regional shifts in host preferences. We studied the interaction between freshwater Gammarus (Crustacea, Amphipoda) and their acanthocephalan parasites using a large-scale field survey and experiments, combined with molecular identification of cryptic host and parasite species. Gammarus pulex is a common host for multiple species of Acanthocephala in Europe but, in Switzerland, is less common than two cryptic members of the Gammarus fossarum species complex (type A and type B). We found that natural populations of these cryptic species were frequently infected by Pomphorhynchus tereticollis and Polymorphus minutus. Four additional parasite species occurred only locally. Parasites were more common in G. fossarum type B than in type A. Infection experiments using several host and parasite sources confirmed consistently lower infection rates in G. pulex than in G. fossarum type A, suggesting a general difference in susceptibility between the two species. In conclusion, we could show that cryptic host species differ in their interactions with parasites, but that these differences were much less dramatic than differences between G. fossarum (type A) and G. pulex. Our data suggest that the acanthocephalans in Switzerland have adapted to the two most common Gammarus species in this region where host species frequencies differ from near-by regions in Europe.
Resumo:
Chrysophyte cysts are recognized as powerful proxies of cold-season temperatures. In this paper we use the relationship between chrysophyte assemblages and the number of days below 4 °C (DB4 °C) in the epilimnion of a lake in northern Poland to develop a transfer function and to reconstruct winter severity in Poland for the last millennium. DB4 °C is a climate variable related to the length of the winter. Multivariate ordination techniques were used to study the distribution of chrysophytes from sediment traps of 37 low-land lakes distributed along a variety of environmental and climatic gradients in northern Poland. Of all the environmental variables measured, stepwise variable selection and individual Redundancy analyses (RDA) identified DB4 °C as the most important variable for chrysophytes, explaining a portion of variance independent of variables related to water chemistry (conductivity, chlorides, K, sulfates), which were also important. A quantitative transfer function was created to estimate DB4 °C from sedimentary assemblages using partial least square regression (PLS). The two-component model (PLS-2) had a coefficient of determination of View the MathML sourceRcross2 = 0.58, with root mean squared error of prediction (RMSEP, based on leave-one-out) of 3.41 days. The resulting transfer function was applied to an annually-varved sediment core from Lake Żabińskie, providing a new sub-decadal quantitative reconstruction of DB4 °C with high chronological accuracy for the period AD 1000–2010. During Medieval Times (AD 1180–1440) winters were generally shorter (warmer) except for a decade with very long and severe winters around AD 1260–1270 (following the AD 1258 volcanic eruption). The 16th and 17th centuries and the beginning of the 19th century experienced very long severe winters. Comparison with other European cold-season reconstructions and atmospheric indices for this region indicates that large parts of the winter variability (reconstructed DB4 °C) is due to the interplay between the oscillations of the zonal flow controlled by the North Atlantic Oscillation (NAO) and the influence of continental anticyclonic systems (Siberian High, East Atlantic/Western Russia pattern). Differences with other European records are attributed to geographic climatological differences between Poland and Western Europe (Low Countries, Alps). Striking correspondence between the combined volcanic and solar forcing and the DB4 °C reconstruction prior to the 20th century suggests that winter climate in Poland responds mostly to natural forced variability (volcanic and solar) and the influence of unforced variability is low.
Resumo:
Comets often display narrow dust jets but more diffuse gas comae when their eccentric orbits bring them into the inner solar system and sunlight sublimates the ice on the nucleus. Comets are also understood to have one or more active areas covering only a fraction of the total surface active with sublimating volatile ices. Calculations of the gas and dust distribution from a small active area on a comet’s nucleus show that as the gas moves out radially into the vacuum of space it expands tangentially, filling much of the hemisphere centered on the active region. The dust dragged by the gas remains more concentrated over the active area. This explains some puzzling appearances of comets having collimated dust jets but more diffuse gaseous atmospheres. Our test case is 67P/Churyumov–Gerasimenko, the Rosetta mission target comet, whose activity is dominated by a single area covering only 4% of its surface.
Resumo:
The sweet chestnut (Castanea sativa Mill.) is the only native species of the genus in Europe. The broad diffusion and active management by man resulted in the establishment of the species at the limits of its potential ecological range, which makes it difficult to trace its original natural area. The present distribution ranges from North-Western Africa (e.g. Morocco) to North-Western Europe (southern England, Belgium) and from south-western Asia (e.g. Turkey) to Eastern Europe (e.g. Romania), the Caucasus (Georgia, Armenia) and the Caspian Sea. In Europe the main chestnut forests are concentrated in a few countries such as Italy, France and the Iberian Peninsula. The sweet chestnut has a remarkable multipurpose character, and may be managed for timber production (coppice and high forest) as well as for fruit production (traditional orchards), including a broad range of secondary products and ecosystem services.
Resumo:
The European larch (Larix decidua Mill.) is a pioneer, very long-lived, fast-growing coniferous tree, which occurs in the central and eastern mountains of Europe, forming open forests or pasture woods at the upper tree limits. Larch is the only deciduous conifer in Europe as an adaptation to continental alpine climates. In fact, it is able to tolerate very cold temperatures during winter and, by losing its needles, avoids foliage desiccation. It is a transitional species, colonising open terrain after natural disturbances. It forms pure stands but more often it is found with other alpine tree species, which tend to replace it if no other disturbances occur. Thanks to its adaptability and the durability of its wood, the European larch represents an important silvicultural tree species in the alpine regions, planted even outside its natural ranges. Its wood is largely used for carpentry, furniture and pulp for paper. In lower altitudes or with high precipitation rates, larch is more susceptible to fungal diseases. Outbreaks of insect defoliators, principally caused by the larch bud moth (Zeiraphera diniana), can limit tree development, with economic losses in plantations, but they rarely lead to the death of the trees.
Resumo:
Around 14 distinct virus species-complexes have been detected in honeybees, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.) and varroa mite (Varroa destructor) samples from Europe and the USA. The virus has a naturally poly-adenylated RNA genome of about 6500 nucleotides with a genome organization and sequence similar to the Tymoviridae (Tymovirales; Tymoviridae), a predominantly plant-infecting virus family. Literature and laboratory analyses indicated that the virus had not previously been described. The virus is very common in French apiaries, mirroring the results from an extensive Belgian survey, but could not be detected in equally-extensive Swedish and Norwegian bee disease surveys. The virus appears to be closely linked to varroa, with the highest prevalence found in varroa samples and a clear seasonal distribution peaking in autumn, coinciding with the natural varroa population development. Sub-genomic RNA analyses show that bees are definite hosts, while varroa is a possible host and likely vector. The tentative name of Bee Macula-like virus (BeeMLV) is therefore proposed. A second, distantly related Tymoviridae-like virus was also discovered in varroa transcriptomes, tentatively named Varroa Tymo-like virus (VTLV).