12 resultados para Nasopharynx
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Colonization with more than one distinct strain of the same species, also termed cocolonization, is a prerequisite for horizontal gene transfer between pneumococcal strains that may lead to change of the capsular serotype. Capsule switch has become an important issue since the introduction of conjugated pneumococcal polysaccharide vaccines. There is, however, a lack of techniques to detect multiple colonization by S. pneumoniae strains directly in nasopharyngeal samples. Two hundred eighty-seven nasopharyngeal swabs collected during the prevaccine era within a nationwide surveillance program were analyzed by a novel technique for the detection of cocolonization, based on PCR amplification of a noncoding region adjacent to the pneumolysin gene (plyNCR) and restriction fragment length polymorphism (RFLP) analysis. The numbers of strains and their relative abundance in cocolonized samples were determined by terminal RFLP. The pneumococcal carriage rate found by PCR was 51.6%, compared to 40.0% found by culture. Cocolonization was present in 9.5% (10/105) of samples, most (9/10) of which contained two strains in a ratio of between 1:1 and 17:1. Five of the 10 cocolonized samples showed combinations of vaccine types only (n = 2) or combinations of nonvaccine types only (n = 3). Carriers of multiple pneumococcal strains had received recent antibiotic treatment more often than those colonized with a single strain (33% versus 9%, P = 0.025). This new technique allows for the rapid and economical study of pneumococcal cocolonization in nasopharyngeal swabs. It will be valuable for the surveillance of S. pneumoniae epidemiology under vaccine selection pressure.
Resumo:
Moraxella catarrhalis is an exclusively human commensal and mucosal pathogen. Its role as a disease-causing organism has long been questioned. Today, it is recognized as one of the major causes of acute otitis media in children, and its relative frequency of isolation from both the nasopharynx and the middle ear cavity has increased since the introduction of the heptavalent pneumococcal conjugate vaccine, which is associated with a shift in the composition of the nasopharyngeal flora in infants and young children. Although otitis media caused by M. catarrhalis is generally believed to be mild in comparison with pneumococcal disease, numerous putative virulence factors have now been identified and it has been shown that several surface components of M. catarrhalis induce mucosal inflammation. In adults with chronic obstructive pulmonary disease (COPD), M. catarrhalis is now a well-established trigger of approximately 10% of acute inflammatory exacerbations.Although the so-called cold shock response is a well-described bacterial stress response in species such as Escherichia coli, Bacillus subtilis or - more recently - Staphylococcus aureus, M. catarrhalis is the only typical nasopharyngeal pathogen in which this response has been investigated. Indeed, a 3-h 26°C cold shock, which may occur physiologically, when humans inspire cold air for prolonged periods of time, increases epithelial cell adherence and enhances proinflammatory host responses and may thus contribute to the symptoms referred to as common cold, which typically are attributed to viral infections.
Resumo:
Morphogenesis of the secondary palate in mammalian embryos involves two major events: first, reorientation of the two vertically oriented palatal shelves into a horizontal position above the tongue, and second, fusion of the two shelves at the midline. Genetic evidence in humans and mice indicates the involvement of matrix metalloproteinases (MMPs). As MMP expression patterns might differ from sites of activity, we used a recently developed highly sensitive in situ zymography technique to map gelatinolytic MMP activity in the developing mouse palate. At embryonic day 14.5 (E14.5), we detected strong gelatinolytic activity around the lateral epithelial folds of the nasopharyngeal cavity, which is generated as a consequence of palatal shelf elevation. Activity was concentrated in the basement membrane of the epithelial fold but extended into the adjacent mesenchyme, and increased in intensity with lateral outgrowth of the cavity at E15.5. Gelatinolytic activity at this site was not the consequence of epithelial fold formation, as it was also observed in Bmp7-deficient embryos where shelf elevation is delayed. In this case, gelatinolytic activity appeared in vertical shelves at the exact position where the epithelial fold will form during elevation. Mmp2 and Mmp14 (MT1-MMP), but not Mmp9 and Mmp13, mRNAs were expressed in the mesenchyme around the epithelial folds of the elevated palatal shelves; this was confirmed by immunostaining for MMP-2 and MT1-MMP. Weak gelatinolytic activity was also found at the midline of E14.5 palatal shelves, which increased during fusion at E15.5. Whereas MMPs have been implicated in palatal fusion before, this is the first report showing that gelatinases might contribute to tissue remodeling during early stages of palatal shelf elevation and formation of the nasopharynx.
Resumo:
The polysaccharide capsule of Streptococcus pneumoniae defines over ninety serotypes, which differ in their carriage prevalence and invasiveness for poorly understood reasons. Recently, an inverse correlation between carriage prevalence and oligosaccharide structure of a given capsule has been described. Our previous work suggested a link between serotype and growth in vitro. Here we investigate whether capsule production interferes with growth in vitro and whether this predicts carriage prevalence in vivo. Eighty-one capsule switch mutants were constructed representing nine different serotypes, five of low (4, 7F, 14, 15, 18C) and four of high carriage prevalence (6B, 9V, 19F, 23F). Growth (length of lag phase, maximum optical density) of wildtype strains, nontypeable mutants and capsule switch mutants was studied in nutrient-restricted Lacks medium (MLM) and in rich undefined brain heart infusion broth supplemented with 5% foetal calf serum (BHI+FCS). In MLM growth phenotype depended on, and was transferred with, capsule operon type. Colonization efficiency of mouse nasopharynx also depended on, and was transferred with, capsule operon type. Capsule production interfered with growth, which correlated inversely with serotype-specific carriage prevalence. Serotypes with better growth and higher carriage prevalence produced thicker capsules (by electron microscopy, FITC-dextran exclusion assays and HPLC) than serotypes with delayed growth and low carriage prevalence. However, expression of cpsA, the first capsule gene, (by quantitative RT-PCR) correlated inversely with capsule thickness. Energy spent for capsule production (incorporation of H3-glucose) relative to amount of capsule produced was higher for serotypes with low carriage prevalence. Experiments in BHI+FCS showed overall better bacterial growth and more capsule production than growth in MLM and differences between serotypes were no longer apparent. Production of polysaccharide capsule in S. pneumoniae interferes with growth in nutrient-limiting conditions probably by competition for energy against the central metabolism. Serotype-specific nasopharyngeal carriage prevalence in vivo is predicted by the growth phenotype.
Resumo:
The polysaccharide capsule protects Streptococcus pneumoniae from phagocytosis during invasive infection, but inhibits adherence. Serotypes vary in their tendency to colonize the nasopharynx or cause invasive infection, and differences in capsule expression may play a role. Expression of the first gene of the capsule operon, cpsA, during in vitro growth of 43 clinical isolates representing 14 common pneumococcal serotypes was compared using quantitative RT-PCR. Serotypes associated with invasive infection (1, 4, 5, 7F, 8 and 14) expressed an average of twofold (P=0.0003) more cpsA than serotypes associated with nasopharyngeal colonization (6A, 6B, 9V, 15, 18C, 19F, 23F and 33). There was no difference in cpsA expression in response to growth under environmental oxygen or anaerobic conditions between the invasive and colonizing transparent strains tested: oxygen concentration did not affect cpsA expression in either the invasive or the colonizing transparent strains. Expression of cpsA at OD(600) 0.6 tended to be greater in strains with a longer lag phase during in vitro growth (P=0.07). Therefore, cpsA expression under ambient oxygen concentrations correlates with serotype-specific invasiveness and is inversely associated with the prevalence of serotype-specific carriage.
Resumo:
BACKGROUND: The Mannheimia species encompass a wide variety of bacterial lifestyles, including opportunistic pathogens and commensals of the ruminant respiratory tract, commensals of the ovine rumen, and pathogens of the ruminant integument. Here we present a scenario for the evolution of the leukotoxin promoter among representatives of the five species within genus Mannheimia. We also consider how the evolution of the leukotoxin operon fits with the evolution and maintenance of virulence. RESULTS: The alignment of the intergenic regions upstream of the leukotoxin genes showed significant sequence and positional conservation over a 225-bp stretch immediately proximal to the transcriptional start site of the lktC gene among all Mannheimia strains. However, in the course of the Mannheimia genome evolution, the acquisition of individual noncoding regions upstream of the conserved promoter region has occurred. The rate of evolution estimated branch by branch suggests that the conserved promoter may be affected to different extents by the types of natural selection that potentially operate in regulatory regions. Tandem repeats upstream of the core promoter were confined to M. haemolytica with a strong association between the sequence of the repeat units, the number of repeat units per promoter, and the phylogenetic history of this species. CONCLUSION: The mode of evolution of the intergenic regions upstream of the leukotoxin genes appears to be highly dependent on the lifestyle of the bacterium. Transition from avirulence to virulence has occurred at least once in M. haemolytica with some evolutionary success of bovine serotype A1/A6 strains. Our analysis suggests that changes in cis-regulatory systems have contributed to the derived virulence phenotype by allowing phase-variable expression of the leukotoxin protein. We propose models for how phase shifting and the associated virulence could facilitate transmission to the nasopharynx of new hosts.
Resumo:
The polysaccharide capsule and pneumolysin toxin are major virulence factors of the human bacterial pathogen Streptococcus pneumoniae. Colonization of the nasopharynx is asymptomatic but invasion of the lungs can result in invasive pneumonia. Here we show that the capsule suppresses the release of the pro-inflammatory cytokines CXCL8 (IL-8) and IL-6 from the human pharyngeal epithelial cell line Detroit 562. Release of both cytokines was much less from human bronchial epithelial cells (iHBEC) but levels were also affected by capsule. Pneumolysin stimulates CXCL8 release from both cell lines. Suppression of CXCL8 homologue (CXCL2/MIP-2) release by the capsule was also observed in vivo during intranasal colonization of mice but was only discernable in the absence of pneumolysin. When pneumococci were administered intranasally to mice in a model of long term, stable nasopharyngeal carriage, encapsulated S. pneumoniae remained in the nasopharynx whereas the nonencapsulated pneumococci disseminated into the lungs. Pneumococcal capsule plays a role not only in protection from phagocytosis but also in modulation of the pro-inflammatory immune response in the respiratory tract.
Resumo:
Streptococcus pneumoniae is an important cause of bacterial meningitis and pneumonia but usually colonizes the human nasopharynx harmlessly. As this niche is simultaneously populated by other bacterial species, we looked for a role and pathway of communication between pneumococci and other species. This paper shows that two proteins of non-encapsulated S. pneumoniae, AliB-like ORF 1 and ORF 2, bind specifically to peptides matching other species resulting in changes in the pneumococci. AliB-like ORF 1 binds specifically peptide SETTFGRDFN, matching 50S ribosomal subunit protein L4 of Enterobacteriaceae, and facilitates upregulation of competence for genetic transformation. AliB-like ORF 2 binds specifically peptides containing sequence FPPQS, matching proteins of Prevotella species common in healthy human nasopharyngeal microbiota. We found that AliB-like ORF 2 mediates the early phase of nasopharyngeal colonization in vivo. The ability of S. pneumoniae to bind and respond to peptides of other bacterial species occupying the same host niche may play a key role in adaptation to its environment and in interspecies communication. These findings reveal a completely new concept of pneumococcal interspecies communication which may have implications for communication between other bacterial species and for future interventional therapeutics.
Resumo:
Chapter 1 gives an overview about Streptococcus pneumoniae, its role as a human pathogen and its virulence factors. Additionally, biofilm development and its relevance in clinics are introduced, and the innate immune response to pneumococcus as well as bacterial-viral interactions in the upper respiratory tract are also discussed. Chapter 2 emphasizes the three main topics of this thesis: the role of capsule and pneumolysin in the immune response in the respiratory tract, biofilm formation of S. pneumoniae serotypes and commensal streptococci in vitro, and host innate immune responses to RSV and S. pneumoniae during in vitro co-infections. Aims and hypotheses are provided here. Chapter 3 is divided into two parts: First, the release of the pro-inflammatory cytokines CXCL8 and IL-6 from the human pharyngeal epithelial cell line Detroit 562 and from human bronchial epithelial cells (iHBEC) is described in response to S. pneumoniae. Capsule was shown to suppress the release of both cytokines in both cell lines tested, but release was much less from iHBEC cells. During intranasal colonization of mice, suppression of CXCL8 release by the capsule was also observed in vivo, but the effect was only measured in the absence of pneumolysin. Long term, stable nasopharyngeal carriage in a mouse model resulted in the dissemination of nonencapsulated pneumococci into the lungs, whereas encapsulated strains remained in the nasopharynx. The S. pneumoniae capsule thus plays a role in modulation of the pro-inflammatory immune response in the respiratory tract. Second, results on immunological cells and immune regulation in a long term, stable nasopharyngeal carriage mouse model are presented. Mice were infected with encapsulated or nonencapsulated pneumococcal strains, and after 1, 3, 8 and 15 days, were sacrificed to evaluate the numbers of CD45+ cells, neutrophils, macrophages, FoxP3+ regulatory T-cells and CD3+ T-cells in the nasal mucosa as well as the amount of secreted IL-10 in the nasopharynx. Nasopharyngeal colonization which is effectively silent resulted in the stimulation of FoxP3+ regulatory T-cells and IL-10 release associated with immune homeostasis, whereas lung infiltration was required to increase the number of neutrophils and macrophages resulting in a stronger innate immune response in the nasal mucosa. Chapter 4 contains results of mono- and co-stimulation using RSV and pneumococci or pneumococcal virulence factors on the human bronchial epithelial cell line BEAS-2B. An increase in CXCL8 and IL-6 levels was measured for mixed stimulations of RSV and pneumococcus when encapsulated bacteria were used. Increasing pneumolysin concentrations resulted in enhanced CXCL8 levels. Priming of bronchial epithelial cells with RSV opens the door for more severe pneumococcal infections. Chapter 5 is composed of two parts: The first part describes initial biofilm formation of serotypes 6B and 7F in a static model in vitro. Biofilms of both serotypes contained SCVs, but only serotype 6B increased in SCV formation between 16 and 65h of incubation. SCV stability was tested by passaging clones in complex medium, where SCV production is not associated with advantages in growth. Serotype 6B lost the SCV phenotype indicating a fast adaptation to a changing nutritional environment. Limitations of our in vitro model are discussed. The second part is about initial biofilm formation of mixed culture growth of S. pneumoniae with commensal streptococci. Competition dominates this process. S. oralis and pneumococcus compete for nutrients, whereas mixed species growth of S. mitis or S. pseudopneumoniae with S. pneumoniae is mainly influenced by other factors. In Chapter 6 the findings of chapters 3, 4 and 5 are discussed and an outlook for further studies is provided. Chapters 7, 8, 9, 10 and 11 contain the references, the acknowledgements, the curriculum vitae, the appendix and the declaration of originality.
Resumo:
OBJECTIVES Cone beam computed tomography (CBCT) is frequently used in treatment planning for alveolar bone grafting (ABG) and orthognathic surgery in patients with cleft lip and palate (CLP). CBCT images may depict coincident findings. The aim of this study was to assess the prevalence of incidental findings on CBCT scans in CLP patients. SUBJECTS AND METHODS Initial CBCTs taken from consecutive patients (n = 187; mean age 11.7 years, range 6.9-45) with a non-syndromic orofacial cleft from January 2006 until June 2012 were systematically evaluated. Twenty-eight patients (mean age 19.3 years, range 13.2-30.9) had been subjected to ABG before their first CBCT was taken; 61 patients had a CBCT before and after ABG. Sinuses, nasopharynx, oropharynx, throat, skull, vertebrae, temporomandibular joint (TMJ), maxilla and mandible were checked for incidental findings. RESULTS On 95.1 % of the CBCTs, incidental findings were found. The most prevalent were airway/sinus findings (56.1 %), followed by dental problems, e.g. missing teeth (52 %), nasal septum deviation (34 %), middle ear and mastoid opacification, suggestive for otitis media (10 %) and (chronic) mastoiditis (9 %), abnormal TMJ anatomy (4.9 %) and abnormal vertebral anatomy (1.6 %). In the 28 patients whose first CBCT was taken at least 2 years after ABG, bone was still present in the reconstructed cleft area except in 2 out of 12 patients with a bilateral CLP. The ABG donor site (all bone grafts were taken from the chin area) was still recognizable in over 50 % of the patients. Based on the CBCT findings, 10 % of the patients were referred for further diagnosis and 9 % for further treatment related to dental problems. CONCLUSION Incidental findings are common on CBCTs. Compared with the literature, CLP patients have more dental, nasal and ear problems. Thus, whenever a CBCT is available, this scan should be reviewed by all specialists in the CLP team focusing on their specific background knowledge concerning symptoms and treatment of these patients. CLINICAL RELEVANCE The high number of findings indicates that CBCT imaging is a helpful tool in the treatment of CLP patients not only related to alveolar bone grafting and orthognathic surgery but it also provides diagnostic information for almost all specialties involved in CLP treatment.
Resumo:
BACKGROUND Pathogenic bacteria are often asymptomatically carried in the nasopharynx. Bacterial carriage can be reduced by vaccination and has been used as an alternative endpoint to clinical disease in randomised controlled trials (RCTs). Vaccine efficacy (VE) is usually calculated as 1 minus a measure of effect. Estimates of vaccine efficacy from cross-sectional carriage data collected in RCTs are usually based on prevalence odds ratios (PORs) and prevalence ratios (PRs), but it is unclear when these should be measured. METHODS We developed dynamic compartmental transmission models simulating RCTs of a vaccine against a carried pathogen to investigate how VE can best be estimated from cross-sectional carriage data, at which time carriage should optimally be assessed, and to which factors this timing is most sensitive. In the models, vaccine could change carriage acquisition and clearance rates (leaky vaccine); values for these effects were explicitly defined (facq, 1/fdur). POR and PR were calculated from model outputs. Models differed in infection source: other participants or external sources unaffected by the trial. Simulations using multiple vaccine doses were compared to empirical data. RESULTS The combined VE against acquisition and duration calculated using POR (VEˆacq.dur, (1-POR)×100) best estimates the true VE (VEacq.dur, (1-facq×fdur)×100) for leaky vaccines in most scenarios. The mean duration of carriage was the most important factor determining the time until VEˆacq.dur first approximates VEacq.dur: if the mean duration of carriage is 1-1.5 months, up to 4 months are needed; if the mean duration is 2-3 months, up to 8 months are needed. Minor differences were seen between models with different infection sources. In RCTs with shorter intervals between vaccine doses it takes longer after the last dose until VEˆacq.dur approximates VEacq.dur. CONCLUSION The timing of sample collection should be considered when interpreting vaccine efficacy against bacterial carriage measured in RCTs.