14 resultados para Nanostructures.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a technique for interactive rendering of diffraction effects produced by biological nanostructures such as snake skin surface gratings. Our approach uses imagery from atomic force microscopy that accurately captures the nanostructures responsible for structural coloration, that is, coloration due to wave interference, in a variety of animals. We develop a rendering technique that constructs bidirectional reflection distribution functions (BRDFs) directly from the measured data and leverages precomputation to achieve interactive performance. We demonstrate results of our approach using various shapes of the surface grating nanostructures. Finally, we evaluate the accuracy of our precomputation-based technique and compare to a reference BRDF construction technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-performance thermoplastics including polyetheretherketone (PEEK) are key biomaterials for load-bearing implants. Plasma treatment of implants surfaces has been shown to chemically activate its surface, which is a prerequisite to achieve proper cell attachment. Oxygen plasma treatment of PEEK films results in very reproducible surface nanostructures and has been reported in the literature. Our goal is to apply the plasma treatment to another promising polymer, polyetherketoneketone (PEKK), and compare its characteristics to the ones of PEEK. Oxygen plasma treatments of plasma powers between 25 and 150 W were applied on 60 μm-thick PEKK and 100 μm-thick PEEK films. Analysis of the nanostructures by atomic force microscopy showed that the roughness increased and island density decreased with plasma power for both PEKK and PEEK films correlating with contact angle values without affecting bulk properties of the used films. Thermal analysis of the plasma-treated films shows that the plasma treatment does not change the bulk properties of the PEKK and PEEK films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a technique for interactive rendering of diffraction effects produced by biological nanostructures, such as snake skin surface gratings. Our approach uses imagery from atomic force microscopy that accurately captures the geometry of the nanostructures responsible for structural colouration, that is, colouration due to wave interference, in a variety of animals. We develop a rendering technique that constructs bidirectional reflection distribution functions (BRDFs) directly from the measured data and leverages pre-computation to achieve interactive performance. We demonstrate results of our approach using various shapes of the surface grating nanostructures. Finally, we evaluate the accuracy of our pre-computation-based technique and compare to a reference BRDF construction technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optical properties of a match-like plasmonic nanostructure are numerically investigated using full-wave finite-difference time-domain analysis in conjunction with dispersive material models. This work is mainly motivated by the developed technique enabling reproducible fabrication of nanomatch structures as well as the growing applications that utilize the localized field enhancement in plasmonic nanostructures. Our research revealed that due to the pronounced field enhancement and larger resonance tunabilities, some nanomatch topologies show potentials for various applications in the field of, e.g., sensing as well as a novel scheme for highly reproducible tips in scanning near field optical microscopy, among others. Despite the additional degrees of freedom that are offered by the composite nature of the proposed nanomatch topology, the paper also reflects on a fundamental complication intrinsic to the material interfaces especially in the nanoscale: stoichiometric mixing. We conclude that the specificity in material modeling will become a significant issue in future research on functionalized composite nanostructures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this review an overview about biological applications of magnetic colloidal nanoparticles will be given, which comprises their synthesis, characterization, and in vitro and in vivo applications. The potential future role of magnetic nanoparticles compared to other functional nanoparticles will be discussed by highlighting the possibility of integration with other nanostructures and with existing biotechnology as well as by pointing out the specific properties of magnetic colloids. Current limitations in the fabrication process and issues related with the outcome of the particles in the body will be also pointed out in order to address the remaining challenges for an extended application of magnetic nanoparticles in medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self – assembly is a powerful tool for the construction of highly organized nanostructures. Therefore, the possibility to control and predict pathways of molecular ordering on the nanoscale level is a critical issue for the production of materials with tunable and adaptive macroscopic properties. 2D polymers are attractive objects for the field of material sciences due to their exceptional properties. [1] As shown before, amphiphilic oligopyrenotides (produced via automated solid-phase synthesis) form rod–like supramolecular polymers in water. [2] These assemblies form 1D objects. [3] By applying certain changes to the design of the oligopyrenotide units the dimensionality of the formed assemblies can be influenced. Herein, we demonstrate that Py3 (see Figure 1) forms defined supramolecular assemblies under thermodynamic conditions in water. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM). The obtained results suggest that oligopyrenotides with the present type of geometry and linker length leads to formation of 2D supramolecular assemblies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self – assembly is a powerful tool for the construction of highly organized nanostructures [1]. Therefore, the possibility to control and predict pathways of molecular ordering on the nanoscale level is a critical issue for the production of materials with tunable and adaptive macroscopic properties. Herein, we demonstrate that designed molecule Py3 forms dimensionally - defined supramolecular assemblies under thermodynamic conditions in water [2]. To study Py3 self-assembly, we carried out whole set of spectroscopic and microscopic experiments. The factors influencing stability, morphology and behavior of «nanosheets» in multicomponent systems are discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer implants are interesting alternatives to the contemporary load-bearing implants made from metals. Polyetheretherketone (PEEK), a well-established biomaterial for example, is not only iso-elastic to bone but also permits investigating the surrounding soft tissues using magnetic resonance imaging or computed tomography, which is particularly important for cancer patients. The commercially available PEEK bone implants, however, require costly coatings, which restricts their usage. As an alternative to coatings, plasma activation can be applied. The present paper shows the plasma-induced preparation of nanostructures on polymer films and on injection-molded micro-cantilever arrays and the associated chemical modifications of the surface. In vitro cell experiments indicate the suitability of the activation process. In addition, we show that microstructures such as micro-grooves 1 μm deep and 20 μm wide cause cell alignment. The combination of micro-injection molding, simultaneous microstructuring using inserts/bioreplica and plasma treatments permits the preparation of polymer implants with nature-analogue, anisotropic micro- and nanostructures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordination-driven gelation of a benzothiadiazole-fused tetrathiafulvalene (TTF) is demonstrated. This is the first work reporting highly stable metallogels based on a donor-acceptor conjugate with such a simple structure for the construction of new low-bandgap materials with various functional properties and novel nanostructures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic-organic heterojunctions are nowadays highly regarded materials for light-emitting diodes, field-effect transistors, and photovoltaic cells with the prospect of designing low-cost, flexible, and efficient electronic devices.1-3 However, the key parameter of optimized heterojunctions relies on the choice of the molecular compounds as well as on the morphology of the organic-organic interface,4 which thus requires fundamental studies. In this work, we investigated the deposition of C60 molecules at room temperature on an organic layer compound, the salt bis(benzylammonium)bis(oxalato)cupurate(II), by means of noncontact atomic force microscopy. Three-dimensional molecular islands of C60 having either triangular or hexagonal shapes are formed on the substrate following a "Volmer-Weber" type of growth. We demonstrate the dynamical reshaping of those C60 nanostructures under the local action of the AFM tip at room temperature. The dissipated energy is about 75 meV and can be interpreted as the activation energy required for this migration process.