2 resultados para Nalidixic acid
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Molecular analysis of Francisella tularensis subsp. holarctica isolates from humans and animals revealed the presence of two subgroups belonging to the phylogenetic groups B.FTNF002-00 and B.13 in Switzerland. This finding suggests a broader spread of this group in Europe than previously reported. Until recently, only strains belonging to the Western European cluster (group B.FTNF002-00) had been isolated from tularaemia cases in Switzerland. The endemic strains belonging to group B.FTNF002-00 are sensitive to erythromycin, in contrast to the strains of the newly detected group B.13 that are resistant to this antibiotic. All the strains tested were susceptible to ciprofloxacin, streptomycin, gentamicin, nalidixic acid and chloramphenicol but showed reduced susceptibility to tetracycline when tested in a growth medium supplemented with divalent cations. The data show a previously undetected spread of group B.13 westwards in Europe, associated with changes in the antibiotic resistance profile relevant to treatment of tularaemia.
Resumo:
Yersinia enterocolitica 4/O:3 is the most important human pathogenic bioserotype in Europe and the predominant pathogenic bioserotype in slaughter pigs. Although many studies on the virulence of Y. enterocolitica strains have showed a broad spectrum of detectable factors in pigs and humans, an analysis based on a strict comparative approach and serving to verify the virulence capability of porcine Y. enterocolitica as a source for human yersiniosis is lacking. Therefore, in the present study, strains of biotype (BT) 4 isolated from Swiss slaughter pig tonsils and feces and isolates from human clinical cases were compared in terms of their spectrum of virulence-associated genes (yadA, virF, ail, inv, rovA, ymoA, ystA, ystB and myfA). An analysis of the associated antimicrobial susceptibility pattern completed the characterization. All analyzed BT 4 strains showed a nearly similar pattern, comprising the known fundamental virulence-associated genes yadA, virF, ail, inv, rovA, ymoA, ystA and myfA. Only ystB was not detectable among all analyzed isolates. Importantly, neither the source of the isolates (porcine tonsils and feces, humans) nor the serotype (ST) had any influence on the gene pattern. From these findings, it can be concluded that the presence of the full complement of virulence genes necessary for human infection is common among porcine BT 4 strains. Swiss porcine BT 4 strains not only showed antimicrobial susceptibility to chloramphenicol, cefotaxime, ceftazidime, ciprofloxacin, colistin, florfenicol, gentamicin, kanamycin, nalidixic acid, sulfamethoxazole, streptomycin, tetracycline and trimethoprim but also showed 100% antibiotic resistance to ampicillin. The human BT 4 strains revealed comparable results. However, in addition to 100% antibiotic resistance to ampicillin, 2 strains were resistant to chloramphenicol and nalidixic acid. Additionally, 1 of these strains was resistant to sulfamethoxazole. The results demonstrated that Y. enterocolitica BT 4 isolates from porcine tonsils, as well as from feces, show the same virulence-associated gene pattern and antibiotic resistance properties as human isolates from clinical cases, consistent with the etiological role of porcine BT 4 in human yersiniosis. Thus, cross-contamination of carcasses and organs at slaughter with porcine Y. enterocolitica BT 4 strains, either from tonsils or feces, must be prevented to reduce human yersiniosis.