11 resultados para NO3--N
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Knowledge of the fate of deposited N in the possibly N-limited, highly biodiverse north Andean forests is important because of the possible effects of N inputs on plant performance and species composition. We analyzed concentrations and fluxes of NO3 −–N, NH4 +–N and dissolved organic N (DON) in rainfall, throughfall, litter leachate, mineral soil solutions (0.15–0.30 m depths) and stream water in a montane forest in Ecuador during four consecutive quarters and used the natural 15N abundance in NO3 − during the passage of rain water through the ecosystem and bulk δ15N values in soil to detect N transformations. Depletion of 15N in NO3 − and increased NO3 −–N fluxes during the passage through the canopy and the organic layer indicated nitrification in these compartments. During leaching from the organic layer to mineral soil and stream, NO3 − concentrations progressively decreased and were enriched in 15N but did not reach the δ15N values of solid phase organic matter (δ15N = 5.6–6.7‰). This suggested a combination of nitrification and denitrification in mineral soil. In the wettest quarter, the δ15N value of NO3 − in litter leachate was smaller (δ15N = −1.58‰) than in the other quarters (δ15N = −9.38 ± SE 0.46‰) probably because of reduced mineralization and associated fractionation against 15N. Nitrogen isotope fractionation of NO3 − between litter leachate and stream water was smaller in the wettest period than in the other periods probably because of a higher rate of denitrification and continuous dilution by isotopically lighter NO3 −–N from throughfall and nitrification in the organic layer during the wettest period. The stable N isotope composition of NO3 − gave valuable indications of N transformations during the passage of water through the forest ecosystem from rainfall to the stream.
Resumo:
Water-bound nitrogen (N) cycling in temperate terrestrial ecosystems of the Northern Hemisphere is today mainly inorganic because of anthropogenic release of reactive N to the environment. In little-industrialized and remote areas, in contrast, a larger part of N cycling occurs as dissolved organic N (DON). In a north Andean tropical montane forest in Ecuador, the N cycle changed markedly during 1998–2010 along with increasing N deposition and reduced soil moisture. The DON concentrations and the fractional contribution of DON to total N significantly decreased in rainfall, throughfall, and soil solutions. This inorganic turn of the N cycle was most pronounced in rainfall and became weaker along the flow path of water through the system until it disappeared in stream water. Decreasing organic contributions to N cycling were caused not only by increasing inorganic N input but also by reduced DON production and/or enhanced DON decomposition. Accelerated DON decomposition might be attributable to less waterlogging and higher nutrient availability. Significantly increasing NO3-N concentrations and NO3-N/NH4-N concentration ratios in throughfall and litter leachate below the thick organic layers indicated increasing nitrification. In mineral soil solutions, in contrast, NH4-N concentrations increased and NO3-N/NH4-N concentration ratios decreased significantly, suggesting increasing net ammonification. Our results demonstrate that the remote tropical montane forests on the rim of the Amazon basin experienced a pronounced change of the N cycle in only one decade. This change likely parallels a similar change which followed industrialization in the temperate zone of the Northern Hemisphere more than a century ago.
Resumo:
Ecosystems are faced with high rates of species loss which has consequences for their functions and services. To assess the effects of plant species diversity on the nitrogen (N) cycle, we developed a model for monthly mean nitrate (NO3-N) concentrations in soil solution in 0-30 cm mineral soil depth using plant species and functional group richness and functional composition as drivers and assessing the effects of conversion of arable land to grassland, spatially heterogeneous soil properties, and climate. We used monthly mean NO3-N concentrations from 62 plots of a grassland plant diversity experiment from 2003 to 2006. Plant species richness (1-60) and functional group composition (1-4 functional groups: legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs) were manipulated in a factorial design. Plant community composition, time since conversion from arable land to grassland, soil texture, and climate data (precipitation, soil moisture, air and soil temperature) were used to develop one general Bayesian multiple regression model for the 62 plots to allow an in-depth evaluation using the experimental design. The model simulated NO3-N concentrations with an overall Bayesian coefficient of determination of 0.48. The temporal course of NO3-N concentrations was simulated differently well for the individual plots with a maximum plot-specific Nash-Sutcliffe Efficiency of 0.57. The model shows that NO3-N concentrations decrease with species richness, but this relation reverses if more than approx. 25 % of legume species are included in the mixture. Presence of legumes increases and presence of grasses decreases NO3-N concentrations compared to mixtures containing only small and tall herbs. Altogether, our model shows that there is a strong influence of plant community composition on NO3-N concentrations.
Resumo:
During two extended summer seasons in 2006 and 2007 we operated two battery driven versions of the Caltech active strand cloud water collector (MiniCASCC) at the Niesen mountain (2362 m a.s.l.) in the northern part of the Swiss Alps, and two devices at the Lägeren research tower (690 m a.s.l.) at the northern boundary of the Swiss Plateau. During these two field operation phases we gained weekly samples of fog water, where we analyzed the major anions and cations, and the isotope ratios of fog water (in form of δ2H and δ18O). Dominant ions in fog water at all sites were NH4+, NO3−, and SO42 −. Compared to precipitation, the enrichment factors in fog water were in the range 5–9 at the highest site, Niesen Kulm. We found considerably lower summertime ion loadings in fog water at the two Alpine sites than at lower elevations above the Swiss Plateau. The lowest ion concentrations were found at the Niesen Kulm site at 2300 m a.s.l., whereas the highest concentrations (a factor 7 compared to Niesen Kulm) were found in fog water at the Lägeren site. Occult nitrogen deposition was estimated from fog frequency and typical fog water flux rates. This pathway contributes 0.3–3.9 kg N ha− 1 yr− 1 to the total N deposition at the highest site on Niesen mountain, and 0.1–2.2 kg N ha− 1 yr− 1 at the lower site. These inputs are the reverse of ion concentrations measured in fog due to the 2.5 times higher frequency of fog occurrence at the mountain top (overall fog occurrence was 25% of the time) as compared to the lower Niesen Schwandegg site. Although fog water concentrations were on the lower range reported in earlier studies, fog water is likely to be an important N source for Northern Alpine ecosystems and might reach values up to 16% of the total N deposition and up to 75% of wet N deposition by precipitation.
Resumo:
Located in the northeastern region of Italy, the Venetian Plain (VP) is a sedimentary basin containing an extensively exploited groundwater system. The northern part is characterised by a large undifferentiated phreatic aquifer constituted by coarse grain alluvial deposits and recharged by local rainfalls and discharges from the rivers Brenta and Piave. The southern plain is characterised by a series of aquitards and sandy aquifers forming a well-defined artesian multi-aquifer system. In order to determine origins, transit times and mixing proportions of different components in groundwater (GW), a multi tracer study (H, He/He, C, CFC, SF, Kr, Ar, Sr/Sr, O, H, cations, and anions) has been carried out in VP between the rivers Brenta and Piave. The geochemical pattern of GW allows a distinction of the different water origins in the system, in particular based on View the MathML source HCO3-,SO42-,Ca/Mg,NO3-, O, H. A radiogenic Sr signature clearly marks GW originated from the Brenta and Tertiary catchments. End-member analysis and geochemical modelling highlight the existence of a mixing process involving waters recharged from the Brenta and Piave rivers, from the phreatic aquifer and from another GW reservoirs characterised by very low mineralization. Noble gas excesses in respect to atmospheric equilibrium occur in all samples, particularly in the deeper aquifers of the Piave river, but also in phreatic water of the undifferentiated aquifers. He–H ages in the phreatic aquifer and in the shallower level of the multi-aquifer system indicate recharge times in the years 1970–2008. The progression of H–He ages with the distance from the recharge areas together with initial tritium concentration (H + Hetrit) imply an infiltration rate of about 1 km/y and the absence of older components in these GW. SF and Kr data corroborate these conclusions. H − He ages in the deeper artesian aquifers suggest a dilution process with older, tritium free waters. C Fontes–Garnier model ages of the old GW components range from 1 to 12 ka, yielding an apparent GW velocity of about 1–10 m/y. Increase of radiogenic He follows the progression of C ages. Ar, radiogenic He and C tracers yield model-dependent age-ranges in overall good agreement once diffusion of C from aquitards, GW dispersion, lithogenic Ar production, and He production-rate heterogeneities are taken into account. The rate of radiogenic He increase with time, deduced by comparison with C model ages, is however very low compared to other studies. Comparison with C and C data obtained 40 years ago on the same aquifer system shows that exploitation of GW caused a significant loss of the old groundwater reservoir during this time.
Resumo:
Backgrounds and Aims Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies.Methods Root uptake of NH4+ and NO3-, and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions.Key Results Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for NH4+.Conclusions The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits.
Resumo:
Purpose Precipitation of dissolved organic matter (DOM) by multivalent cations is important for biogeochemical cycling of organic carbon. We investigated to which extent cation bridges are involved in DOM precipitation and how cross-links by cations and water molecule bridges (WaMB) stabilise the matrix of precipitated DOM. Materials and methods DOM was precipitated from the aqueous extract of a forest floor layer adding solutions of Ca(NO3)2, Al(NO3)3 and Pb(NO3)2 with different initial metal cation/C (Me/C) ratios. Precipitates were investigated by differential scanning calorimetry before and after ageing to detect cation bridges, WaMB and restructuring of supramolecular structure. Results and discussion Twenty-five to sixty-seven per cent of the dissolved organic carbon was precipitated. The precipitation efficiency of cations increased in the order Ca < Al < Pb, while the cation content of precipitates increased in the order Pb < Ca < Al. The different order and the decrease in the WaMB transition temperature (T*) for Al/C > 3 is explained by additional formation of small AlOOH particles. Thermal analysis indicated WaMB and their disruption at T* of 53–65 °C. Like cation content, T* increased with increasing Me/C ratio and in the order Ca < Pb < Al for low Me/C. This supports the general assumption that cross-linking ability increases in the order Ca < Pb < Al. The low T* for high initial Me/C suggests less stable and less cross-linked precipitates than for low Me/C ratios. Conclusions Our results suggest a very similar thermal behaviour of OM bound in precipitates compared with soil organic matter and confirms the relevance of WaMB in stabilisation of the supramolecular structure of cation-DOM precipitates. Thus, stabilisation of the supramolecular structure of the DOM precipitates is subjected to dynamics in soils.
Resumo:
Background and Aims: The response of forest ecosystems to continuous nitrogen (N) deposition is still uncertain. We investigated imports and exports of dissolved N from mull-type organic layers to identify the controls of N leaching in Central European beech forests under continuous N deposition. Methods: Dissolved N fluxes with throughfall and through mull-type organic layers (litter leachate) were measured continuously in 12 beech forests on calcareous soil in two regions in Germany over three consecutive growing seasons. Results Mean growing season net (i.e. litter leachate – throughfall flux) fluxes of total dissolved N (TDN) from the organic layer were low (2.3 ± 5.6 kg ha −1 ) but varied widely from 12.9 kg ha −1 to –8.3 kg ha −1 . The small increase of dissolved N fluxes during the water passage through mull-type organic layers suggested that high turnover rates coincided with high microbial N assimilation and plant N uptake. Stand basal area had a positive feedback on N fluxes by providing litter for soil organic matter forma- tion. Plant diversity, especially herb diversity, reduced dissolved N fluxes. Soil fauna biomass increased NO3−-N fluxes with litter leachate by stimulating mineralization. Microbial biomass measures were not related to dissolved N fluxes. Conclusions Our results show that dissolved N exports from organic layers contain significant amounts of throughfall-derived N (mainly NO3−-N) that flushes through the organic layer but also highlight that N leaching from organic layers is driven by the complex interplay of plants, animals and microbes. Furthermore, diverse understories reduce N leaching from Central European beech forests.
Resumo:
The accurate electron density distribution and magnetic properties of two metal-organic polymeric magnets, the quasi-one-dimensional (1D) Cu(pyz)(NO3)2 and the quasi-two-dimensional (2D) [Cu(pyz)2(NO3)]NO3·H2O, have been investigated by high-resolution single-crystal X-ray diffraction and density functional theory calculations on the whole periodic systems and on selected fragments. Topological analyses, based on quantum theory of atoms in molecules, enabled the characterization of possible magnetic exchange pathways and the establishment of relationships between the electron (charge and spin) densities and the exchange-coupling constants. In both compounds, the experimentally observed antiferromagnetic coupling can be quantitatively explained by the Cu-Cu superexchange pathway mediated by the pyrazine bridging ligands, via a σ-type interaction. From topological analyses of experimental charge-density data, we show for the first time that the pyrazine tilt angle does not play a role in determining the strength of the magnetic interaction. Taken in combination with molecular orbital analysis and spin density calculations, we find a synergistic relationship between spin delocalization and spin polarization mechanisms and that both determine the bulk magnetic behavior of these Cu(II)-pyz coordination polymers.
Resumo:
Using Arabidopsis, we analyzed the effect of omission of a nitrogen source and of the addition of different nitrogen-containing compounds on the extractable activity and the enzyme and mRNA accumulation of adenosine 5′-phosphosulfate reductase (APR). During 72 h without a nitrogen source, the APR activity decreased to 70% and 50% of controls in leaves and roots, respectively, while cysteine (Cys) and glutathione contents were not affected. Northern and western analysis revealed that the decrease of APR activity was correlated with decreased mRNA and enzyme levels. The reduced APR activity in roots could be fully restored within 24 h by the addition of 4 mM each of NO3 −, NH4 +, or glutamine (Gln), or 1 mM O-acetylserine (OAS). 35SO4 2− feeding showed that after addition of NH4 +, Gln, or OAS to nitrogen-starved plants, incorporation of 35S into proteins significantly increased in roots; however, glutathione and Cys labeling was higher only with Gln and OAS or with OAS alone, respectively. OAS strongly increased mRNA levels of all three APR isoforms in roots and also those of sulfite reductase, Cys synthase, and serine acetyltransferase. Our data demonstrate that sulfate reduction is regulated by nitrogen nutrition at the transcriptional level and that OAS plays a major role in this regulation.