12 resultados para NO CO REACTION SYSTEM

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A triple cell co-culture model was recently established by the authors, consisting of either A549 or 16HBE14o- epithelial cells, human blood monocyte-derived macrophages and dendritic cells, which offers the possibility to study the interaction of xenobiotics with those cells. The 16HBE14o- containing co-culture model mimics the airway epithelial barrier, whereas the A549 co-cultures mimic the alveolar type II-like epithelial barrier. The goal of the present work was to establish a new triple cell co-culture model composed of primary alveolar type I-like cells isolated from human lung biopsies (hAEpC) representing a more realistic alveolar epithelial barrier wall, since type I epithelial cells cover >93% of the alveolar surface. Monocultures of A549 and 16HBE14o- were morphologically and functionally compared with the hAEpC using laser scanning microscopy, as well as transmission electron microscopy, and by determining the epithelial integrity. The triple cell co-cultures were characterized using the same methods. It could be shown that the epithelial integrity of hAEpC (mean ± SD, 1180 ± 188 Ω cm(2)) was higher than in A549 (172 ± 59 Ω cm(2)) but similar to 16HBE14o- cells (1469 ± 156 Ω cm(2)). The triple cell co-culture model with hAEpC (1113 ± 30 Ω cm(2)) showed the highest integrity compared to the ones with A549 (93 ± 14 Ω cm(2)) and 16HBE14o- (558 ± 267 Ω cm(2)). The tight junction protein zonula occludens-1 in hAEpC and 16HBE14o- were more regularly expressed but not in A549. The epithelial alveolar model with hAEpC combined with two immune cells (i.e. macrophages and dendritic cells) will offer a novel and more realistic cell co-culture system to study possible cell interactions of inhaled xenobiotics and their toxic potential on the human alveolar type I epithelial wall.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Both climate change and socio-economic development will significantly modify the supply and consumption of water in future. Consequently, regional development has to face aggravation of existing or emergence of new conflicts of interest. In this context, transdisciplinary co-production of knowledge is considered as an important means for coping with these challenges. Accordingly, the MontanAqua project aims at developing strategies for more sustainable water management in the study area Crans-Montana-Sierre (Switzerland) in a transdisciplinary way. It strives for co-producing system, target and transformation knowledge among researchers, policy makers, public administration and civil society organizations. The research process basically consisted of the following steps: First, the current water situation in the study region was investigated. How much water is available? How much water is being used? How are decisions on water distribution and use taken? Second, participatory scenario workshops were conducted in order to identify the stakeholders’ visions of regional development. Third, the water situation in 2050 was simulated by modeling the evolution of water resources and water use and by reflecting on the institutional aspects. These steps laid ground for jointly assessing the consequences of the stakeholders’ visions of development in view of scientific data regarding governance, availability and use of water in the region as well as developing necessary transformation knowledge. During all of these steps researchers have collaborated with stakeholders in the support group RegiEau. The RegiEau group consists of key representatives of owners, managers, users, and pressure groups related to water and landscape: representatives of the communes (mostly the presidents), the canton (administration and parliament), water management associations, agriculture, viticulture, hydropower, tourism, and landscape protection. The aim of the talk is to explore potentials and constraints of scientific modeling of water availability and use within the process of transdisciplinary co-producing strategies for more sustainable water governance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Notochordal cells (NC) remain in the focus of research for regenerative therapy for the degenerated intervertebral disc (IVD) due to their progenitor status. Recent findings suggested their regenerative action on more mature disc cells, presumably by the secretion of specific factors, which has been described as notochordal cell conditioned medium (NCCM). The aim of this study was to determine NC culture conditions (2D/3D, fetal calf serum, oxygen level) that lead to significant IVD cell activation in an indirect co-culture system under normoxia and hypoxia (2% oxygen).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Advances in food transformation have dramatically increased the diversity of products on the market and, consequently, exposed consumers to a complex spectrum of bioactive nutrients whose potential risks and benefits have mostly not been confidently demonstrated. Therefore, tools are needed to efficiently screen products for selected physiological properties before they enter the market. NutriChip is an interdisciplinary modular project funded by the Swiss programme Nano-Tera, which groups scientists from several areas of research with the aim of developing analytical strategies that will enable functional screening of foods. The project focuses on postprandial inflammatory stress, which potentially contributes to the development of chronic inflammatory diseases. The first module of the NutriChip project is composed of three in vitro biochemical steps that mimic the digestion process, intestinal absorption, and subsequent modulation of immune cells by the bioavailable nutrients. The second module is a miniaturised form of the first module (gut-on-a-chip) that integrates a microfluidic-based cell co-culture system and super-resolution imaging technologies to provide a physiologically relevant fluid flow environment and allows sensitive real-time analysis of the products screened in vitro. The third module aims at validating the in vitro screening model by assessing the nutritional properties of selected food products in humans. Because of the immunomodulatory properties of milk as well as its amenability to technological transformation, dairy products have been selected as model foods. The NutriChip project reflects the opening of food and nutrition sciences to state-of-the-art technologies, a key step in the translation of transdisciplinary knowledge into nutritional advice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Oxidized low density lipoprotein (oxLDL) has been shown to induce apoptosis and senescence of endothelial progenitor cells (EPC). In the present study, we hypothesized that even sub-apoptotic concentrations of oxLDL impair the angiogenic potential of EPC and investigated if this effect is mediated by affecting adhesion and incorporation. METHODS: A co-culture system of human microvascular endothelial cells and EPC was used to study the effect of sub-apoptotic concentrations of native (nLDL) and oxLDL on cell-cell interaction. The expression and the functional role of angiogenic adhesion molecules and integrins was monitored by FACS and neutralizing assay, respectively. RESULTS: We observed an inhibition of tube formation and impairment of EPC integration into the vascular network of mature endothelial cells by oxLDL. In contrast, nLDL did not affect angiogenic properties of EPC. Incubation of EPC with sub-apoptotic oxLDL concentrations significantly decreased E-selectin and integrin alpha(v)beta(5) expression (37.6% positive events vs. 71.5% and 24.3% vs. 49.9% compared to control culture media without oxLDL). Interestingly, expression of alpha(v)beta(3), VE-cadherin and CD31 remained unchanged. Blocking of E-selectin and integrin alpha(v)beta(5) by neutralizing antibody effectively inhibited adhesion of EPC to differentiated endothelial cells (56.5% and 41.9% of control; p<0.001). CONCLUSION: In conclusion, oxidative alteration of LDL impairs angiogenic properties of EPC at sub-apoptotic levels by downregulation of E-selectin and integrin alpha(v)beta(5), both substantial mediators of EPC-endothelial cell interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The potential health effects of inhaled engineered nanoparticles are almost unknown. To avoid and replace toxicity studies with animals, a triple cell co-culture system composed of epithelial cells, macrophages and dendritic cells was established, which simulates the most important barrier functions of the epithelial airway. Using this model, the toxic potential of titanium dioxide was assessed by measuring the production of reactive oxygen species and the release of tumour necrosis factor alpha. The intracellular localisation of titanium dioxide nanoparticles was analyzed by energy filtering transmission electron microscopy. Titanium dioxide nanoparticles were detected as single particles without membranes and in membrane-bound agglomerates. Cells incubated with titanium dioxide particles showed an elevated production of reactive oxygen species but no increase of the release of tumour necrosis factor alpha. Our in vitro model of the epithelial airway barrier offers a valuable tool to study the interaction of particles with lung cells at a nanostructural level and to investigate the toxic potential of nanoparticles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some free-living amoebae, including some species of the genus Acanthamoeba, can cause infections in humans and animals. These organisms are known to cause granulomatous amebic encephalitis (GAE) in predominantly immune-deficient persons. In the present study, we isolated a potentially human pathogenic Acanthamoeba isolate originating from a public heated indoor swimming pool in Switzerland. The amoebae, thermophilically preselected by culture at 37 degrees C, subsequently displayed a high thermotolerance, being able to grow at 42 degrees C, and a marked cytotoxicity, based on a co-culture system using the murine cell line L929. Intranasal infection of Rag2-immunodeficient mice resulted in the death of all animals within 24 days. Histopathology of brains and lungs revealed marked tissue necrosis and hemorrhagic lesions going along with massive proliferation of amoebae. PCR and sequence analysis, based on 18S rDNA, identified the agent as Acanthamoeba lenticulata. In summary, the present study reports on an Acanthamoeba isolate from a heated swimming pool suggestive of being potentially pathogenic to immunocompromised persons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To determine the potential inhalatory risk posed by carbon nanotubes (CNTs), a tier-based approach beginning with an in vitro assessment must be adopted. The purpose of this study therefore was to compare 4 commonly used in vitro systems of the human lung (human blood monocyte-derived macrophages [MDM] and monocyte-derived dendritic cells [MDDC], 16HBE14o- epithelial cells, and a sophisticated triple cell co-culture model [TCC-C]) via assessment of the biological impact of different CNTs (single-walled CNTs [SWCNTs] and multiwalled CNTs [MWCNTs]) over 24h. No significant cytotoxicity was observed with any of the cell types tested, although a significant (p < .05), dose-dependent increase in tumor necrosis factor (TNF)-α following SWCNT and MWCNT exposure at concentrations up to 0.02mg/ml to MDM, MDDC, and the TCC-C was found. The concentration of TNF-α released by the MDM and MDDC was significantly higher (p < .05) than the TCC-C. Significant increases (p < .05) in interleukin (IL)-8 were also found for both 16HBE14o- epithelial cells and the TCC-C after SWCNTs and MWCNTs exposure up to 0.02mg/ml. The TCC-C, however, elicited a significantly (p < .05) higher IL-8 release than the epithelial cells. The oxidative potential of both SWCNTs and MWCNTs (0.005-0.02mg/ml) measured by reduced glutathione (GSH) content showed a significant difference (p < .05) between each monoculture and the TCC-C. It was concluded that because only the co-culture system could assess each endpoint adequately, that, in comparison with monoculture systems, multicellular systems that take into consideration important cell type-to-cell type interactions could be used as predictive in vitro screening tools for determining the potential deleterious effects associated with CNTs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Microfluidics system are novel tools to study cell-cell interactions in vitro. This project focuses on the development of a new microfluidic device to co-culture alveolar epithelial cells and mesenchymal stem cells to study cellular interactions involved in healing the injured alveolar epithelium. Methods: Microfluidic systems in polydimethylsiloxane were fabricated by soft lithography. The alveolar A549 epithelial cells were seeded and injury tests were made on the cells by perfusion with media containing H2O2 or bleomycin during 6 or 18hrs. Rat Bone marrow derived stromal cells (BMSC) were then introduced into the system and cell-cell interaction was studied over 24 hrs. Results: A successful co-culture of A549 alveolar epithelial cells and BMS was achieved in the microfluidic system. The seeded alveolar epithelial cells and BMSC adhered to the bottom surface of the microfluidic device and proliferated under constant perfusion. Epithelial injury to mimic mechanisms seen in idiopathic pulmonary fibrosis was induced in the microchannels by perfusing with H2O2 or bleomycin. Migration of BMSC towards the injured epithelium was observed as well as cell-cell interaction between the two cell types was also seen. Conclusion: We demonstrate a novel microfluidic device aimed at showing interactions between different cell types on the basis of a changing microenvironment. Also we were able to confirm interaction between injured alvolar epithelium and BMSC, and showed that BMSC try to heal the injured epitelium.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of "Shield-1" prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A94 since the CYP activity was significantly enhanced with co-expressed POR.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Implementation of user-friendly, real-time, electronic medical records for patient management may lead to improved adherence to clinical guidelines and improved quality of patient care. We detail the systematic, iterative process that implementation partners, Lighthouse clinic and Baobab Health Trust, employed to develop and implement a point-of-care electronic medical records system in an integrated, public clinic in Malawi that serves HIV-infected and tuberculosis (TB) patients. METHODS Baobab Health Trust, the system developers, conducted a series of technical and clinical meetings with Lighthouse and Ministry of Health to determine specifications. Multiple pre-testing sessions assessed patient flow, question clarity, information sequencing, and verified compliance to national guidelines. Final components of the TB/HIV electronic medical records system include: patient demographics; anthropometric measurements; laboratory samples and results; HIV testing; WHO clinical staging; TB diagnosis; family planning; clinical review; and drug dispensing. RESULTS Our experience suggests that an electronic medical records system can improve patient management, enhance integration of TB/HIV services, and improve provider decision-making. However, despite sufficient funding and motivation, several challenges delayed system launch including: expansion of system components to include of HIV testing and counseling services; changes in the national antiretroviral treatment guidelines that required system revision; and low confidence to use the system among new healthcare workers. To ensure a more robust and agile system that met all stakeholder and user needs, our electronic medical records launch was delayed more than a year. Open communication with stakeholders, careful consideration of ongoing provider input, and a well-functioning, backup, paper-based TB registry helped ensure successful implementation and sustainability of the system. Additional, on-site, technical support provided reassurance and swift problem-solving during the extended launch period. CONCLUSION Even when system users are closely involved in the design and development of an electronic medical record system, it is critical to allow sufficient time for software development, solicitation of detailed feedback from both users and stakeholders, and iterative system revisions to successfully transition from paper to point-of-care electronic medical records. For those in low-resource settings, electronic medical records for integrated care is a possible and positive innovation.