9 resultados para NIT-2Py
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A combined spectroscopic and ab initio theoretical study of the doubly hydrogen-bonded complex of 2-pyridone (2PY) with NH3 has been performed. The S-1 <- S-0 spectrum extends up to approximate to 1200 cm(-1) above the 0(0)(0) band, close to twice the range observed for 2PY. The S-1 state nonradiative decay for vibrations above approximate to 300 cm(-1) in the NH3 complex is dramatically slowed down relative to bare 2PY. Also, the Delta v=2,4,... overtone bands of the v(1)' and v(2)' out-of-plane vibrations that dominate the low-energy spectral region of 2PY are much weaker or missing for 2PY center dot NH3, which implies that the bridging (2PY)NH center dot center dot center dot NH3 and H2NH center dot center dot center dot O=C H-bonds clamp the 2PY at a planar geometry in the S-1 state. The mass-resolved UV vibronic spectra of jet-cooled 2PY center dot NH3 and its H/D mixed isotopomers are measured using two-color resonant two-photon ionization spectroscopy. The S-0 and S-1 equilibrium structures and normal-mode frequencies are calculated by density functional (B3LYP) and correlated ab initio methods (MP2 and approximate second-order coupled-cluster, CC2). The S-1 <- S-0 vibronic assignments are based on configuration interaction singles (CIS) and CC2 calculations. A doubly H-bonded bridged structure of C-S symmetry is predicted, in agreement with that of Held and Pratt [J. Am. Chem. Soc. 1993, 115, 9718]. While the B3LYP and MP2 calculated rotational constants are in very good agreement with experiment, the calculated H2NH center dot center dot center dot O=C H-bond distance is approximate to 0.7 angstrom shorter than that derived by Held and Pratt. On the other hand, this underlines their observation that ammonia can act as a strong H-bond donor when built into an H-bonded bridge. The CC2 calculations predict the H2NH center dot center dot center dot O distance to increase by 0.2 angstrom upon S-1 <- S-0 electronic excitation, while the (2PY)NH center dot center dot center dot NH3 H-bond remains nearly unchanged. Thus, the expansion of the doubly H-bonded bridge in the excited state is asymmetric and almost wholly due to the weakening of the interaction of ammonia with the keto acceptor group.
Resumo:
The excitonic splitting between the S-1 and S-2 electronic states of the doubly hydrogen-bonded dimer 2-pyridone center dot 6-methyl-2-pyridone (2PY center dot 6M2PY) is studied in a supersonic jet, applying two-color resonant two-photon ionization (2C-R2PI), UV-UV depletion, and dispersed fluorescence spectroscopies. In contrast to the C-2h symmetric (2-pyridone) 2 homodimer, in which the S-1 <- S-0 transition is symmetry-forbidden but the S-2 <- S-0 transition is allowed, the symmetry-breaking by the additional methyl group in 2PY center dot 6M2PY leads to the appearance of both the S-1 and S-2 origins, which are separated by Delta(exp) = 154 cm(-1). When combined with the separation of the S-1 <- S-0 excitations of 6M2PY and 2PY, which is delta = 102 cm(-1), one obtains an S-1/S-2 exciton coupling matrix element of V-AB, el = 57 cm(-1) in a Frenkel-Davydov exciton model. The vibronic couplings in the S-1/S-2 <- S-0 spectrum of 2PY center dot 6M2PY are treated by the Fulton-Gouterman single-mode model. We consider independent couplings to the intramolecular 6a' vibration and to the intermolecular sigma' stretch, and obtain a semi-quantitative fit to the observed spectrum. The dimensionless excitonic couplings are C(6a') = 0.15 and C(sigma') = 0.05, which places this dimer in the weak-coupling limit. However, the S-1/S-2 state exciton splittings Delta(calc) calculated by the configuration interaction singles method (CIS), time-dependent Hartree-Fock (TD-HF), and approximate second-order coupled-cluster method (CC2) are between 1100 and 1450 cm(-1), or seven to nine times larger than observed. These huge errors result from the neglect of the coupling to the optically active intra-and intermolecular vibrations of the dimer, which lead to vibronic quenching of the purely electronic excitonic splitting. For 2PY center dot 6M2PY the electronic splitting is quenched by a factor of similar to 30 (i.e., the vibronic quenching factor is Gamma(exp) = 0.035), which brings the calculated splittings into close agreement with the experimentally observed value. The 2C-R2PI and fluorescence spectra of the tautomeric species 2-hydroxypyridine center dot 6-methyl-2-pyridone (2HP center dot 6M2PY) are also observed and assigned. (C) 2011 American Institute of Physics.
Resumo:
AIM: The aim of this Case Series was to evaluate the radiographic quality of root fillings performed 5 years previously using the noninstrumentation technology (NIT)-obturation method and to assess radiographically the outcome of these root canal treatments. METHODOLOGY: Seventeen patients requiring root canal treatment participated in this study and were re-evaluated after 5 years. After instrumentation with K-Flexofiles, Calcium-Hydroxide inter-appointment dressing, re-entry and copious irrigation with NaOCl, the teeth were root filled using the NIT. RESULTS: Immediately after obturation the root fillings were (-0.78 +/- 0.11 mm) short when taking the radiographic apex as a reference point. After 60 months these values were -0.85 +/- 0.11 mm. No statistical difference was found (P > 0.05). In the periapical region, PAI rating 1 and 2 increased from 20.1% to 75.6% after 60 months. CONCLUSIONS: * This prospective Case Series demonstrated the performance of the NIT-obturation method in vivo. * Root canals filled by the reduced-pressure method using sealer combined with gutta-percha cones showed good radiographic quality. * Periapical healing after 5 years was comparable with conventional filling techniques.
Resumo:
OBJECTIVE to compare the vascular healing process between the sirolimus-eluting NEVO and the everolimus-eluting Xience stent by optical coherence tomography (OCT) at 1-year follow-up. BACKGROUND Presence of durable polymer on a drug-eluting metallic stent may be the basis of an inflammatory reaction with abnormal healing response. The NEVO stent, having a bioresorbable polymer eluted by reservoir technology, may overcome this problem. METHODS All consecutive patients, who received NEVO or Xience stent implantation between September 2010 and October 2010 in our institution, were included. Vascular healing was assessed at 1-year as percentage of uncovered struts, neointimal thickness (NIT), in-stent/stent area obstruction and pattern of neointima. RESULTS A total 47 patients (2:1 randomization, n = 32 NEVO, n = 15 Xience) were included. Eighteen patients underwent angiographic follow-up (eight patients with nine lesions for NEVO vs. 10 patients with 11 lesions for Xience). The angiographic late loss was numerically higher but not statistically different in NEVO compared with Xience treated lesions (0.38 ± 0.47 mm vs. 0.18 ± 0.27 mm; P = 0.171). OCT analysis of 4,912 struts demonstrated similar rates of uncovered struts (0.5 vs. 0.7%, P = 0.462), higher mean NIT (177.76 ± 87.76 µm vs. 132.22 ± 30.91 µm; P = 0.170) and in stent/stent area obstruction (23.02 ± 14.74% vs. 14.17 ± 5.94%, P = 0.120) in the NEVO as compared with Xience. CONCLUSION The NEVO stent with a reservoir technology seems to exhibit more neointimal proliferation as compared to Xience stent. The findings of our study, which currently represent the unique data existing on this reservoir technology, would need to be confirmed in a large population.
Resumo:
While keto-amino cytosine is the dominant species in aqueous solution, spectroscopic studies in molecular beams and in noble gas matrices show that other cytosine tautomers prevail in apolar environments. Each of these offers two or three H-bonding sites (Watson–Crick, wobble, sugar-edge). The mass- and isomer-specific S1 ← S0 vibronic spectra of cytosine·2-pyridone (Cyt·2PY) and 1-methylcytosine·2PY are measured using UV laser resonant two-photon ionization (R2PI), UV/UV depletion, and IR depletion spectroscopy. The UV spectra of the Watson–Crick and sugar-edge isomers of Cyt·2PY are separated using UV/UV spectral hole-burning. Five different isomers of Cyt·2PY are observed in a supersonic beam. We show that the Watson–Crick and sugar-edge dimers of keto-amino cytosine with 2PY are the most abundant in the beam, although keto-amino-cytosine is only the third most abundant tautomer in the gas phase. We identify the different isomers by combining three different diagnostic tools: (1) methylation of the cytosine N1–H group prevents formation of both the sugar-edge and wobble isomers and gives the Watson–Crick isomer exclusively. (2) The calculated ground state binding and dissociation energies, relative gas-phase abundances, excitation and the ionization energies are in agreement with the assignment of the dominant Cyt·2PY isomers to the Watson–Crick and sugar-edge complexes of keto-amino cytosine. (3) The comparison of calculated ground state vibrational frequencies to the experimental IR spectra in the carbonyl stretch and NH/OH/CH stretch ranges strengthen this identification.
Resumo:
The picosecond (ps) timescale is relevant for the investigation of many molecular dynamical processes such as fluorescence, nonradiative relaxation, intramolecular vibrational relaxation, molecular rotation and intermolecular energy transfer, to name a few. While investigations of ultrafast (femtosecond) processes of biological molecules, e.g. nucleobases and their analogues in the gas phase are available, there are few investigations on the ps time scale. We have constructed a ps pump-ionization setup and a ps streak camera fluorescence apparatus for the determination of lifetimes of supersonic jet-cooled and isolated molecules and clusters. The ps pump-ionization setup was used to determine the lifetimes of the nucleobase analogue 2-aminopurine (2AP) and of two 2AP˙(H2O)n water cluster isomers with n=1 and 2. Their lifetimes lie between 150 ps and 3 ns and are strongly cluster-size dependent. The ps streak camera setup was used to determine accurate fluorescence lifetimes of the uracil analogue 2-pyridone (2PY), its self-dimer (2PY)2, two isomers of its trimer (2PY)3 and its tetramer (2PY)4, which lie in the 7–12 ns range.
Resumo:
OBJECTIVES To evaluate the diagnostic performance of seven non-invasive tests (NITs) of liver fibrosis and to assess fibrosis progression over time in HIV/HCV co-infected patients. METHODS Transient elastography (TE) and six blood tests were compared to histopathological fibrosis stage (METAVIR). Participants were followed over three years with NITs at yearly intervals. RESULTS Area under the receiver operating characteristic curve (AUROC) for significant fibrosis (> = F2) in 105 participants was highest for TE (0.85), followed by FIB-4 (0.77), ELF-Test (0.77), APRI (0.76), Fibrotest (0.75), hyaluronic acid (0.70), and Hepascore (0.68). AUROC for cirrhosis (F4) was 0.97 for TE followed by FIB-4 (0.91), APRI (0.89), Fibrotest (0.84), Hepascore (0.82), ELF-Test (0.82), and hyaluronic acid (0.79). A three year follow-up was completed by 87 participants, all on antiretroviral therapy and in 20 patients who completed HCV treatment (9 with sustained virologic response). TE, APRI and Fibrotest did not significantly change during follow-up. There was weak evidence for an increase of FIB-4 (mean increase: 0.22, p = 0.07). 42 participants had a second liver biopsy: Among 38 participants with F0-F3 at baseline, 10 were progessors (1-stage increase in fibrosis, 8 participants; 2-stage, 1; 3-stage, 1). Among progressors, mean increase in TE was 3.35 kPa, in APRI 0.36, and in FIB-4 0.75. Fibrotest results did not change over 3 years. CONCLUSION TE was the best NIT for liver fibrosis staging in HIV/HCV co-infected patients. APRI-Score, FIB-4 Index, Fibrotest, and ELF-Test were less reliable. Routinely available APRI and FIB-4 performed as good as more expensive tests. NITs did not change significantly during a follow-up of three years, suggesting slow liver disease progression in a majority of HIV/HCV co-infected persons on antiretroviral therapy.