114 resultados para NIS MRNA HALF-LIFE
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The IUPAC-IUGS joint Task Group “Isotopes in Geosciences” recommends a value of (49.61 ± 0.16) Ga for the half life of 87Rb, corresponding to a decay constant λ87 = (1.3972 ± 0.0045) × 10-11 a-1.
Resumo:
The levels of histone mRNA increase 35-fold as selectively detached mitotic CHO cells progress from mitosis through G1 and into S phase. Using an exogenous gene with a histone 3' end which is not sensitive to transcriptional or half-life regulation, we show that 3' processing is regulated as cells progress from G1 to S phase. The half-life of histone mRNA is similar in G1- and S-phase cells, as measured after inhibition of transcription by actinomycin D (dactinomycin) or indirectly after stabilization by the protein synthesis inhibitor cycloheximide. Taken together, these results suggest that the change in histone mRNA levels between G1- and S-phase cells must be due to an increase in the rate of biosynthesis, a combination of changes in transcription rate and processing efficiency. In G2 phase, there is a rapid 35-fold decrease in the histone mRNA concentration which our results suggest is due primarily to an altered stability of histone mRNA. These results are consistent with a model for cell cycle regulation of histone mRNA levels in which the effects on both RNA 3' processing and transcription, rather than alterations in mRNA stability, are the major mechanisms by which low histone mRNA levels are maintained during G1.
Resumo:
Cortisol availability is controlled by 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), which inactivates cortisol in cortisone, unable to bind to the glucocorticoid receptor. The 11beta-HSD2 enzyme activity limits either intracellular cortisol concentrations or within the uteroplacental compartment the transfer of cortisol into the fetal circulation. Mechanisms, by which 11beta-HSD2 activity is controlled, include transcriptional control, posttranscriptional modifications of 11beta-HSD2 transcript half-life, epigenetic regulation via methylation of genomic DNA and direct inhibition of enzymatic activity. The 11beta-HSD2 expression and activity is reduced in preeclampsia and the enzyme activity correlates with factors associated with increased vasoconstriction, such as an increased angiotensin II receptor subtype 1 expression, and notably fetal growth. Numerous signals such as proinflammatory cytokines known to be present and/or elevated in preeclampsia regulate 11beta-HSD2 activity. Shallow trophoblast invasion with the resulting hypoxemia seems to critically reduce available 11beta-HSD2 activity. A positive feedback exists as activated glucocorticoid receptors do enhance 11beta-HSD2 mRNA transcription and mRNA stability. No data are currently available on pregnancy and either epigenetic or direct effects on the activity of the translated enzyme.
Resumo:
The procyclic form of Trypanosoma brucei colonises the gut of its insect vector, the tsetse fly. GPEET and EP procyclins constitute the parasite's surface coat at this stage of the life cycle, and the presence or absence of GPEET distinguishes between early and late procyclic forms, respectively. Differentiation from early to late procyclic forms in vivo occurs in the fly midgut and can be mimicked in culture. Our analysis of this transition in vitro delivered new insights into the process of GPEET repression. First, we could show that parasites followed a concrete sequence of events upon triggering differentiation: after undergoing an initial growth arrest, cells lost GPEET protein, and finally late procyclic forms resumed proliferation. Second, we determined the stability of both GPEET and EP mRNA during differentiation. GPEET mRNA is exceptionally stable in early procyclic forms, with a half-life >6h. The GPEET mRNA detected in late procyclic form cultures is a mixture of transcripts from both bona fide late procyclic forms and GPEET-positive 'laggard' parasites present in these cultures. However, its stability was clearly reduced during differentiation and in late procyclic form cultures. Alternatively processed GPEET transcripts were enriched in samples from late procyclic forms, suggesting that altered mRNA processing might contribute to repression of GPEET in this developmental stage. In addition, we detected GPEET transcripts with non-templated oligo(U) tails that were enriched in late procyclic forms. To the best of our knowledge, this is the first study reporting a uridylyl-tailed, nuclear-encoded mRNA species in trypanosomatids or any other protozoa.
Resumo:
In plant cells, as in all other cells, proteins are submitted to permanent turnover, and the intracellular content of a given protein depends on its rate of both synthesis and degradation. The life time of most proteins is shorter than that of the cell. Thus, in young leaves of Lemna minor, the average half-life of protein was estimated to be 7 days, and it was shorter under stress conditions (Davies 1982). Such observations mean that nitrogen and amino acid fluxes are both cylic and permanent. Although protein turnover may appear wasteful, in terms of energy, numerous studies have shown that proteolysis provides multiple functions in cell physiology, and is an essential regulatory mechanism of cell metabolism and development.
Resumo:
Glucagonlike peptide-1 receptors (GLP-1R) play an increasingly important role in endocrine gastrointestinal tumor management. In particular, virtually all benign insulinomas express GLP-1R in high density. Exendin-4 is a GLP-1 analog that has a longer half-life than GLP-1. Targeting GLP-1R by (111)In-DOTA-exendin-4 or (111)In-DPTA-exendin-4 offers a new approach that permits the successful localization of small benign insulinomas. It is likely that this new noninvasive technique has the potential to replace the invasive localization by selective arterial stimulation and venous sampling.
Resumo:
The lower intestine of adult mammals is densely colonized with nonpathogenic (commensal) microbes. Gut bacteria induce protective immune responses, which ensure host-microbial mutualism. The continuous presence of commensal intestinal bacteria has made it difficult to study mucosal immune dynamics. Here, we report a reversible germ-free colonization system in mice that is independent of diet or antibiotic manipulation. A slow (more than 14 days) onset of a long-lived (half-life over 16 weeks), highly specific anticommensal immunoglobulin A (IgA) response in germ-free mice was observed. Ongoing commensal exposure in colonized mice rapidly abrogated this response. Sequential doses lacked a classical prime-boost effect seen in systemic vaccination, but specific IgA induction occurred as a stepwise response to current bacterial exposure, such that the antibody repertoire matched the existing commensal content.
Resumo:
The terminal homologation by CH(2) insertion into the peptides mentioned in the title is described. This involves replacement of the N-terminal amino acid residue by a β(2) - and of the C-terminal amino acid residue by a β(3) -homo-amino acid moiety (β(2) hXaa and β(3) hXaa, resp.; Fig. 1). In this way, the structure of the peptide chain from the N-terminal to the C-terminal stereogenic center is identical, and the modified peptide is protected against cleavage by exopeptidases (Figs. 2 and 3). Neurotensin (NT; 1) and its C-terminal fragment NT(8-13) are ligands of the G-protein-coupled receptors (GPCR) NT1, NT2, NT3, and NT analogs are promising tools to be used in cancer diagnostics and therapy. The affinities of homologated NT analogs, 2b-2e, for NT1 and NT2 receptors were determined by using cell homogenates and tumor tissues (Table 1); in the latter experiments, the affinities for the NT1 receptor are more or less the same as those of NT (0.5-1.3 vs. 0.6 nM). At the same time, one of the homologated NT analogs, 2c, survives in human plasma for 7 days at 37° (Fig. 6). An NMR analysis of NT(8-13) (Tables 2 and 4, and Fig. 8) reveals that this N-terminal NT fragment folds to a turn in CD(3) OH. - In the case of the human analgesic opiorphin (3a), a pentapeptide, and of the HIV-derived B27-KK10 (4a), a decapeptide, terminal homologation (→3b and 4b, resp.) led to a 7- and 70-fold half-life increase in plasma (Fig. 9). With N-terminally homologated NPY, 5c, we were not able to determine serum stability; the peptide consisting of 36 amino acid residues is subject to cleavage by endopetidases. Three of the homologated compounds, 2b, 2c, and 5c, were shown to be agonists (Fig. 7 and 11). A comparison of terminal homologation with other stability-increasing terminal modifications of peptides is performed (Fig. 5), and possible applications of the neurotensin analogs, described herein, are discussed.
Resumo:
Recurrent prostate cancer presents a challenge to conventional treatment, particularly so to address micrometastatic and small-volume disease. Use of α-radionuclide therapy is considered as a highly effective treatment in such applications due to the shorter range and exquisite cytotoxicity of α-particles as compared with β-particles. (213)Bi is considered an α-emitter with high clinical potential, due to its short half-life (45.6 minutes) being well matched for use in peptide-receptor radionuclide α-therapy; however, there is limited knowledge available within this context of use. In this study, two novel (213)Bi-labeled peptides, DOTA-PEG(4)-bombesin (DOTA-PESIN) and DO3A-CH(2)CO-8-aminooctanoyl-Q-W-A-V-G-H-L-M-NH(2) (AMBA), were compared with (177)Lu (β-emitter)-labeled DOTA-PESIN in a human androgen-independent prostate carcinoma xenograft model (PC-3 tumor). Animals were injected with (177)Lu-DOTA-PESIN, (213)Bi-DOTA-PESIN, or (213)Bi-AMBA to determine the maximum tolerated dose (MTD), biodistribution, and dosimetry of each agent; controls were left untreated or were given nonradioactive (175)Lu-DOTA-PESIN. The MTD of (213)Bi-DOTA-PESIN and (213)Bi-AMBA was 25 MBq (0.68 mCi) whereas (177)Lu-DOTA-PESIN showed an MTD of 112 MBq (3 mCi). At these dose levels, (213)Bi-DOTA-PESIN and (213)Bi-AMBA were significantly more effective than (177)Lu-DOTA-PESIN. At the same time, (177)Lu-DOTA-PESIN showed minimal, (213)Bi-DOTA-PESIN slight, and (213)Bi-AMBA marked kidney damage 20 to 30 weeks posttreatment. These preclinical data indicate that α-therapy with (213)Bi-DOTA-PESIN or (213)Bi-AMBA is more efficacious than β-therapy. Furthermore, (213)Bi-DOTA-PESIN has a better safety profile than (213)Bi-AMBA, and represents a possible new approach for use in peptide-receptor radionuclide α-therapy treating recurrent prostate cancer.
Resumo:
The importance of polymorphisms in the dihydropyrimidine dehydrogenase (DPD) gene (DPYD) for the prediction of severe toxicity in 5-fluorouracil (5-FU) based chemotherapy has been controversially debated. As a key enzyme in the catabolism of 5-FU, DPD is the top candidate for pharmacogenetic studies on 5-FU toxicity, since a reduced DPD activity is thought to result in an increased half-life of the drug, and thus, an increased risk of toxicity. Here, we review the current knowledge on well-known and frequently studied DPYD variants such as the c.1905+1G>A splice site variant, as well as the recent discoveries of important functional variation in the noncoding regions of DPYD. We also outline future directions that are needed to further improve the risk assessment of 5-FU toxicity, in particular with respect to metabolic profiling and in the context of different combination therapeutic regimens, in which 5-FU is used today.
Resumo:
The low-energy β− emitter 161Tb is very similar to 177Lu with respect to half-life, beta energy and chemical properties. However, 161Tb also emits a significant amount of conversion and Auger electrons. Greater therapeutic effect can therefore be expected in comparison to 177Lu. It also emits low-energy photons that are useful for gamma camera imaging. The 160Gd(n,γ)161Gd→161Tb production route was used to produce 161Tb by neutron irradiation of massive 160Gd targets (up to 40 mg) in nuclear reactors. A semiautomated procedure based on cation exchange chromatography was developed and applied to isolate no carrier added (n.c.a.) 161Tb from the bulk of the 160Gd target and from its stable decay product 161Dy. 161Tb was used for radiolabeling DOTA-Tyr3-octreotate; the radiolabeling profile was compared to the commercially available n.c.a. 177Lu. A 161Tb Derenzo phantom was imaged using a small-animal single-photon emission computed tomography camera. Up to 15 GBq of 161Tb was produced by long-term irradiation of Gd targets. Using a cation exchange resin, we obtained 80%–90% of the available 161Tb with high specific activity, radionuclide and chemical purity and in quantities sufficient for therapeutic applications. The 161Tb obtained was of the quality required to prepare 161Tb–DOTA-Tyr3-octreotate. We were able to produce 161Tb in n.c.a. form by irradiating highly enriched 160Gd targets; it can be obtained in the quantity and quality required for the preparation of 161Tb-labeled therapeutic agents.
Resumo:
The pharmacokinetics and the analgesic, anti-inflammatory and antipyretic effects of meloxicam were investigated in a placebo controlled study in 2-week-old piglets. Inflammation was induced by a subcutaneous injection of kaolin in the left metacarpus, and 16 h later, meloxicam (0.6 mg/kg) or saline was administered intramuscularly. The absorption half-life was relatively short (0.19 h) and the elimination half-life was 2.6 h. Mechanical nociceptive threshold testing was used to evaluate the analgesic effect, but no significant effect of the meloxicam treatment was found. The skin temperature of the inflamed area increased after the kaolin injection, but no significant decrease in temperature was found after administration of meloxicam. Only limited pyresis was observed after the kaolin injection, and no significant antipyretic effect of meloxicam was found. The results indicated that this dose of meloxicam had very limited anti-inflammatory and analgesic effects in piglets.
Resumo:
Chronic use of high oxytocin (OT) dosages can cause a reduced response to endogenous OT. In this study the OT dosages used in the milking practice of 82 dairy cow farms were recorded. The OT dosages per cow used were high, especially when injected i.m. (23+/-2 IU) compared with i.v. (7+/-1 IU). In addition, the minimum OT dosages needed to obtain normal milk removal in cows with disturbed milk ejection were investigated. Seventeen cows routinely treated with OT during milking (group T) and 17 cows without previous OT treatment were used (group C). After cessation of spontaneous milk flow, both T and C groups were injected i.v. with a low dosage of OT (0.2 or 0.5 IU/cow). The time from injection until cessation of the OT-induced milk flow was recorded (response phase). The response phase and the amounts of removed milk by effect of the OT injection increased with increasing OT dosage. Values for 0.2 and 0.5 IU/cow of OT injected i.v. were (response phase and amount of milk removed) 198+/-27 and 302+/-18s and 3.4+/-0.7 kg and 6.5+/-1.3 kg, respectively, for the C group, and 157+/-15 and 221+/-16s and 3.2+/-0.5 and 5.5+/-1.0 kg, respectively, for the T group. Within 20 min of the OT injection, plasma concentrations returned to basal levels. The threshold OT concentration at cessation of milk flow after injection of 0.2 or 0.5 IU/cow of OT was calculated based on the OT plasma half-life. The threshold increased with increasing dosages of OT and was higher in group T (8+/-1 and 14+/-1 pg/mL for 0.2 and 0.5 IU/cow, respectively) than in group C (7+/-1 and 11+/-1 pg/mL for 0.2 and 0.5 IU/cow, respectively). In conclusion, desensitization of the udder toward OT occurs when the udder is exposed to elevated OT plasma concentrations, both short-term during the actual milking and long-term due to chronic high-dosage OT treatment. However, low-dosage OT treatments to induce normal milk removal can minimize the observed side effects.