66 resultados para NEUROKININ B RECEPTOR
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Bladder pain syndrome (BPS) is a clinical syndrome of pelvic pain and urinary urgency-frequency in the absence of a specific cause. Investigating the expression levels of genes involved in the regulation of epithelial permeability, bladder contractility, and inflammation, we show that neurokinin (NK)1 and NK2 tachykinin receptors were significantly down-regulated in BPS patients. Tight junction proteins zona occludens-1, junctional adherins molecule -1, and occludin were similarly down-regulated, implicating increased urothelial permeability, whereas bradykinin B(1) receptor, cannabinoid receptor CB1 and muscarinic receptors M3-M5 were up-regulated. Using cell-based models, we show that prolonged exposure of NK1R to substance P caused a decrease of NK1R mRNA levels and a concomitant increase of regulatory micro(mi)RNAs miR-449b and miR-500. In the biopsies of BPS patients, the same miRNAs were significantly increased, suggesting that BPS promotes an attenuation of NK1R synthesis via activation of specific miRNAs. We confirm this hypothesis by identifying 31 differentially expressed miRNAs in BPS patients and demonstrate a direct correlation between miR-449b, miR-500, miR-328, and miR-320 and a down-regulation of NK1R mRNA and/or protein levels. Our findings further the knowledge of the molecular mechanisms of BPS, and have relevance for other clinical conditions involving the NK1 receptor.
Resumo:
Context: Endometriosis is characterized by the growth of ectopic endometrial tissue. Nerve fibers are frequently associated with ectopic lesions, and neurogenic inflammation may play a role in endometriosis. Objective: The purpose of this study was to determine the presence of tachykinin receptors in endometriotic lesions and the role of TNFα on their expression. Design: This study was an assessment of matching eutopic and ectopic endometrial tissue and peritoneal fluid from patients with endometriosis and an in vitro analysis of primary endometrial cells. Setting: The setting was a university hospital. Patients: Participants were premenopausal women undergoing laparoscopy. Interventions: Endometriotic lesions were removed surgically. Main Outcome Measures: Tachykinin mRNA (TACR1/2) and protein (neurokinin 1 receptor [NK1R]) expression in both eutopic and ectopic endometrial tissue from patients with endometriosis and the correlation to peritoneal fluid TNFα were measured. Primary endometrial epithelial and stromal cells were assessed in vitro to determine the induction of TACR1/2 and NK1R expression after TNFα treatment. Cell viability of endometrial stromal cells after substance P exposure was also assessed. Results: Expression of both TACR1 and TACR2 mRNA was significantly higher in the ectopic than in the eutopic tissue. Both TACR1 mRNA and NK1R protein expression was significantly correlated with peritoneal fluid TNFα, and in vitro studies confirmed that TNFα treatment induced both TACR1 mRNA and NK1R protein expression in endometrial stromal cells. In endometrial stromal cells, substance P treatment enhanced cell viability, which was inhibited by a specific NK1R antagonist. Conclusions: NK1R expression is induced in ectopic endometrial tissue by peritoneal TNFα. Induction of NK1R expression may permit endometriotic lesion maintenance via exposure to substance P.
Resumo:
OBJECTIVE: Generation and maintenance of pain in chronic pancreatitis (CP) have been shown to be partially attributable to neuroimmune interactions, which involve neuropeptides such as substance P (SP). So far, expression of SP receptors NK-2R, NK-3R, the SP-encoding gene preprotachykinin A (PPT-A), and the SP degradation enzyme neutral endopeptidase (NEP) and their relation to pain in CP have not been determined. METHODS: Tissue samples from patients with CP (n = 25) and from healthy donors (n = 20) were analyzed for PPT-A, NK-2R, NK-3R, and NEP expression using quantitative RT-PCR. NEP protein levels were examined by immunoblot analysis and its localization was determined using immunohistochemistry. A scoring system was used to grade the extent of fibrosis on hematoxylin and eosin- and Masson-Trichrome-stained sections. Messenger RNA levels and the extent of pain were analyzed for correlations. RESULTS: In CP tissues, NK-2R and PPT-A expression was increased, whereas NK-3R and NEP mRNA levels were comparable with normal pancreas. Overexpression of NK-2R was related to the intensity, frequency, and duration of pain in CP patients. NK-1R and NEP expression was significantly related to the extent of fibrosis. CONCLUSIONS: Expression of NK-2R and PPT-A is increased in CP and is associated with pain. Failure to up-regulate NEP may contribute to the disruption of the neuropeptides loop balance in CP and thus may exacerbate the severe pain syndrome.
Resumo:
Pavlovian fear conditioning, a simple form of associative learning, is thought to involve the induction of associative, NMDA receptor-dependent long-term potentiation (LTP) in the lateral amygdala. Using a combined genetic and electrophysiological approach, we show here that lack of a specific GABA(B) receptor subtype, GABA(B(1a,2)), unmasks a nonassociative, NMDA receptor-independent form of presynaptic LTP at cortico-amygdala afferents. Moreover, the level of presynaptic GABA(B(1a,2)) receptor activation, and hence the balance between associative and nonassociative forms of LTP, can be dynamically modulated by local inhibitory activity. At the behavioral level, genetic loss of GABA(B(1a)) results in a generalization of conditioned fear to nonconditioned stimuli. Our findings indicate that presynaptic inhibition through GABA(B(1a,2)) receptors serves as an activity-dependent constraint on the induction of homosynaptic plasticity, which may be important to prevent the generalization of conditioned fear.
Resumo:
Gastrin-releasing peptide receptors (GRP-R) are upregulated in many cancers, including prostate, breast, and lung. We describe a new radiolabeled bombesin (BBN) analog for imaging and systemic radiotherapy that has improved pharmacokinetics (PK) and better retention of radioactivity in the tumor. METHODS: DO3A-CH2CO-G-4-aminobenzoyl-Q-W-A-V-G-H-L-M-NH2 (AMBA) was synthesized and radiolabeled. The human prostate cancer cell line PC-3 was used to determine the binding (Kd), retention, and efflux of 177Lu-AMBA. Receptor specificity was determined by in vitro autoradiography in human tissues. PK and radiotherapy studies were performed in PC-3 tumor-bearing male nude mice. RESULTS: 177Lu-AMBA has a high affinity for the GRP-R (Kd, 1.02 nmol/L), with a maximum binding capacity (Bmax) of 414 fmol/10(6) cells (2.5 x 10(5) GRP-R/cell). Internalization was similar for 177Lu-AMBA (76.8%), 177Lu-BBN8 (72.9%), and 125I-[Tyr4]-BBN (74.9%). Efflux was markedly lower for 177Lu-AMBA (2.9%) compared with 177Lu-BBN8 (15.9%) and 125I-[Tyr4]-BBN (46.1%). By receptor autoradiography, Lu-AMBA binds specifically to GRP-R (0.8 nmol/L) and to the neuromedin B receptor (NMB-R) (0.9 nmol/L), with no affinity for the bb3 receptor (>1,000 nmol/L). 177Lu-AMBA was renally excreted (55 %ID 1 h [percentage injected dose at 1 h]); tumor uptake at 1 and 24 h was 6.35 %ID/g and 3.39 %ID/g, respectively. One or 2 doses of 177Lu-AMBA (27.75 MBq/dose) significantly prolonged the life span of PC-3 tumor-bearing mice (P < 0.001 and P < 0.0001, respectively) and decreased PC-3 tumor growth rate over controls. When compared using World Health Organization criteria, mice receiving 2 doses versus 1 dose of 177Lu-AMBA demonstrated a shift away from stable/progressive disease toward complete/partial response; by RECIST (Response Evaluation Criteria in Solid Tumors), median survival increased by 36% and time to progression/progression-free survival increased by 65%. CONCLUSION: 177Lu-AMBA binds with nanomolar affinity to GRP-R and NMB-R, has low retention of radioactivity in kidney, demonstrates a very favorable risk-benefit profile, and is in phase I clinical trials.
Resumo:
RhoH is a member of the Rho (ras homologous) GTPase family, yet it lacks GTPase activity and thus remains in its active conformation. Unlike other Rho GTPases, the RhoH gene transcript is restricted to hematopoietic cells and RhoH was shown to be required for adequate T-cell activation through the TCR. Here, we demonstrate that both blood T and B cells, but not neutrophils or monocytes, express RhoH protein under physiological conditions. Upon TCR complex activation, RhoH was degraded in lysosomes of primary and Jurkat T cells. Pharmacologic activation of T cells distal to the TCR complex had no effect on RhoH protein levels suggesting that early events during T-cell activation are required for RhoH protein degradation. In contrast to T cells, activation of the BCR in blood B cells was not associated with changes in RhoH levels. These data suggest that RhoH function might be regulated by lysosomal degradation of RhoH protein following TCR complex but not BCR activation. This newly discovered regulatory pathway of RhoH expression might limit TCR signaling and subsequent T-cell activation upon Ag contact.
Resumo:
Vitamin E deficiency increases expression of the CD36 scavenger receptor, suggesting specific molecular mechanisms and signaling pathways modulated by alpha-tocopherol. We show here that alpha-tocopherol down-regulated CD36 expression (mRNA and protein) in oxidized low density lipoprotein (oxLDL)-stimulated THP-1 monocytes, but not in unstimulated cells. Furthermore, alpha-tocopherol treatment of monocytes led to reduction of fluorescent oxLDL-3,3'-dioctadecyloxacarbocyanine perchlorate binding and uptake. Protein kinase C (PKC) appears not to be involved because neither activation of PKC by phorbol 12-myristate 13-acetate nor inhibition by PKC412 was affected by alpha-tocopherol. However, alpha-tocopherol could partially prevent CD36 induction after stimulation with a specific agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma; troglitazone), indicating that this pathway is susceptible to alpha-tocopherol action. Phosphorylation of protein kinase B (PKB) at Ser473 was increased by oxLDL, and alpha-tocopherol could prevent this event. Expression of PKB stimulated the CD36 promoter as well as a PPARgamma element-driven reporter gene, whereas an inactive PKB mutant had no effect. Moreover, coexpression of PPARgamma and PKB led to additive induction of CD36 expression. Altogether, our results support the existence of PKB/PPARgamma signaling pathways that mediate CD36 expression in response to oxLDL. The activation of CD36 expression by PKB suggests that both lipid biosynthesis and fatty acid uptake are stimulated by PKB.
Resumo:
AIMS Tumour buds in colorectal cancer represent an aggressive subgroup of non-proliferating and non-apoptotic tumour cells. We hypothesize that the survival of tumour buds is dependent upon anoikis resistance. The role of tyrosine kinase receptor B (TrkB), a promoter of epithelial-mesenchymal transition and anoikis resistance, in facilitating budding was investigated. METHODS AND RESULTS Tyrosine kinase receptor B immunohistochemistry was performed on a multiple-punch tissue microarray of 211 colorectal cancer resections. Membranous/cytoplasmic and nuclear expression was evaluated in tumour and buds. Tumour budding was assessed on corresponding whole tissue slides. Relationship to Ki-67 and caspase-3 was investigated. Analysis of Kirsten Ras (KRAS), proto-oncogene B-RAF (BRAF) and cytosine-phosphate-guanosine island methylator phenotype (CIMP) was performed. Membranous/cytoplasmic and nuclear TrkB were strongly, inversely correlated (P < 0.0001; r = -0.41). Membranous/cytoplasmic TrkB was overexpressed in buds compared to the main tumour body (P < 0.0001), associated with larger tumours (P = 0.0236), high-grade budding (P = 0.0011) and KRAS mutation (P = 0.0008). Nuclear TrkB was absent in buds (P <0.0001) and in high-grade budding cancers (P =0.0073). Among patients with membranous/cytoplasmic TrkB-positive buds, high tumour membranous/cytoplasmic TrkB expression was a significant, independent adverse prognostic factor [P = 0.033; 1.79, 95% confidence interval (CI) 1.05-3.05]. Inverse correlations between membranous/cytoplasmic TrkB and Ki-67 (r = -0.41; P < 0.0001) and caspase-3 (r =-0.19; P < 0.05) were observed. CONCLUSIONS Membranous/cytoplasmic TrkB may promote an epithelial-mesenchymal transition (EMT)-like phenotype with high-grade budding and maintain viability of buds themselves.
Resumo:
BACKGROUND This first-in-human proof-of-concept study aimed to check whether safety and preclinical results obtained by intratumoral administration of BQ788, an endothelin receptor B (EDNRB) antagonist, can be repeated in human melanoma patients. METHODS Three patients received a single intralesional BQ788 application of 3 mg. After 3-7 days, the lesions were measured and removed for analysis. The administered dose was increased to a cumulative dosage of 8 mg in patient 4 (4 × 2.0 mg, days 0-3; lesion removed on day 4) and to 10 mg in patient 5 (3 × 3.3 mg, days 0, 3, and 10; lesion removed after 14 days). Control lesions were simultaneously treated with phosphate-buffered saline (PBS). All samples were processed and analyzed without knowledge of the clinical findings. RESULTS No statistical evaluation was possible because of the number of patients (n = 5) and the variability in the mode of administration. No adverse events were observed, regardless of administered dose. All observations were in accordance with results obtained in preclinical studies. Accordingly, no difference in degree of tumor necrosis was detected between BQ788- and PBS-treated samples. In addition, both EDNRB and Ki67 showed decreased expression in patients 2 and 5 and, to a lesser extent, in patient 1. Similarly, decreased expression of EDNRB mRNA in patients 2 and 5 and of BCL2A1 and/or PARP3 in patients 2, 3, and 5 was found. Importantly, semiquantitatively scored immunohistochemistry for CD31 and CD3 revealed more blood vessels and lymphocytes, respectively, in BQ788-treated tumors of patients 2 and 4. Also, in all patients, we observed inverse correlation in expression levels between EDNRB and HIF1A. Finally, in patient 5 (the only patient treated for longer than 1 week), we observed inhibition in lesion growth, as shown by size measurement. CONCLUSION The intralesional applications of BQ788 were well tolerated and showed signs of directly and indirectly reducing the viability of melanoma cells.
Resumo:
Adaptive immune responses are characterized by substantial restructuring of secondary lymphoid organs. The molecular and cellular factors responsible for virus-induced lymphoid remodeling are not well known to date. Here we applied optical projection tomography, a mesoscopic imaging technique, for a global analysis of the entire 3-dimensional structure of mouse peripheral lymph nodes (PLNs), focusing on B-cell areas and high endothelial venule (HEV) networks. Structural homeostasis of PLNs was characterized by a strict correlation between total PLN volume, B-cell volume, B-cell follicle number, and HEV length. After infection with lymphocytic choriomeningitis virus, we observed a substantial, lymphotoxin (LT) beta-receptor-dependent reorganization of the PLN microarchitecture, in which an initial B-cell influx was followed by 3-fold increases in PLN volume and HEV network length on day 8 after infection. Adoptive transfer experiments revealed that virus-induced PLN and HEV network remodeling required LTalpha(1)beta(2)-expressing B cells, whereas the inhibition of vascular endothelial growth factor-A signaling pathways had no significant effect on PLN expansion. In summary, lymphocytic choriomeningitis virus-induced PLN growth depends on a vascular endothelial growth factor-A-independent, LT- and B cell-dependent morphogenic pathway, as revealed by an in-depth mesoscopic analysis of the global PLN structure.