2 resultados para NACL

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capability of goats to maintain milk production during water deprivation is remarkable and not yet fully understood. The aim of the present study was to investigate whether intravenous infusions of hypertonic NaCl cause release of both vasopressin and oxytocin and whether the peptides, in combination with the hyperosmolality, affect milk flow and milk composition. Six Swedish domestic landrace goats in their first to third lactation were milked every 30 min during experiments. Hypertonic NaCl (HNaCl) or isotonic NaCl (IsoNaCl) were infused for 90 min. Goats were not allowed to drink during infusions. Plasma vasopressin concentration increased during HNaCl infusions, and did not change in response to IsoNaCl infusions. Plasma oxytocin concentration did not change during either infusion. Milk flow was maintained during the infusions. Milk fat concentration decreased in the three samples taken before onset of the infusions, but then increased gradually during HNaCl infusions, while it continued to fall during the IsoNaCl infusions. Milk osmolality followed the rise in plasma osmolality during the HNaCl infusions and did not change in IsoNaCl experiments. Milk lactose concentration increased throughout both series of experiments, the concentration being higher during HNaCl infusions. Milk protein concentration did not change during HNaCl infusions, but fell in the IsoNaCl experiments. It is concluded that the hyperosmolality in combination with elevated plasma vasopressin levels did not disturb the secretory activity of the mammary cells, but rather facilitated emptying of the alveolar milk. Such a mechanism may help to explain the sustained milk production in water deprived goats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rutile (TiO2) is an important host phase for high field strength elements (HFSE) such as Nb in metamorphic and subduction zone environments. The observed depletion of Nb in arc rocks is often explained by the hypothesis that rutile sequesters HFSE in the subducted slab and overlying sediment, and is chemically inert with respect to aqueous fluids evolved during prograde metamorphism in the forearc to subarc environment. However, field observations of exhumed terranes, and experimental studies, indicate that HFSE may be soluble in complex aqueous fluids at high pressure (i.e., >0.5 GPa) and moderate to high temperature (i.e., >300 degrees C). In this study, we investigated experimentally the mobility of Nb in NaCl- and NaF-bearing aqueous fluids in equilibrium with Nb-bearing rutile at pressure-temperature conditions applicable to fluid evolution in arc environments. Niobium concentrations in aqueous fluid at rutile saturation were measured directly by using a hydrothermal diamond-anvil cell (HDAC) and synchrotron X-ray fluorescence (SXRF) at 2.1 to 6.5 GPa and 300-500 degrees C, and indirectly by performing mass loss experiments in a piston-cylinder (PC) apparatus at similar to 1 GPa and 700-800 degrees C. The concentration of Nb in a 10 wt% NaCl aqueous fluid increases from 6 to 11 mu g/g as temperature increases from 300 to 500 degrees C, over a pressure range from 2.1 to 2.8 GPa, consistent with a positive temperature dependence. The concentration of Nb in a 20 wt% NaCl aqueous fluid varies from 55 to 150 mu g/g at 300 to 500 degrees C, over a pressure range from 1.8 to 6.4 GPa; however, there is no discernible temperature or pressure dependence. The Nb concentration in a 4 wt% NaF-bearing aqueous fluid increases from 180 to 910 mu g/g as temperature increases from 300 to 500 degrees C over the pressure range 2.1 to 6.5 GPa. The data for the F-bearing fluid indicate that the Nb content of the fluid exhibits a dependence on temperature between 300 and 500 degrees C at >= 2 GPa, but there is no observed dependence on pressure. Together, the data demonstrate that the hydrothermal mobility of Nb is strongly controlled by the composition of the fluid, consistent with published data for Ti. At all experimental conditions, however, the concentration of Nb in the fluid is always lower than coexisting rutile, consistent with a role for rutile in moderating the Nb budget of arc rocks.