69 resultados para Myocardial Remodeling

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIM As technological interventions treating acute myocardial infarction (MI) improve, post-ischemic heart failure increasingly threatens patient health. The aim of the current study was to test whether FADD could be a potential target of gene therapy in the treatment of heart failure. METHODS Cardiomyocyte-specific FADD knockout mice along with non-transgenic littermates (NLC) were subjected to 30 minutes myocardial ischemia followed by 7 days of reperfusion or 6 weeks of permanent myocardial ischemia via the ligation of left main descending coronary artery. Cardiac function were evaluated by echocardiography and left ventricular (LV) catheterization and cardiomyocyte death was measured by Evans blue-TTC staining, TUNEL staining, and caspase-3, -8, and -9 activities. In vitro, H9C2 cells transfected with ether scramble siRNA or FADD siRNA were stressed with chelerythrin for 30 min and cleaved caspase-3 was assessed. RESULTS FADD expression was significantly decreased in FADD knockout mice compared to NLC. Ischemia/reperfusion (I/R) upregulated FADD expression in NLC mice, but not in FADD knockout mice at the early time. FADD deletion significantly attenuated I/R-induced cardiac dysfunction, decreased myocardial necrosis, and inhibited cardiomyocyte apoptosis. Furthermore, in 6 weeks long term permanent ischemia model, FADD deletion significantly reduced the infarct size (from 41.20 ± 3.90% in NLC to 26.83 ± 4.17% in FADD deletion), attenuated myocardial remodeling, improved cardiac function and improved survival. In vitro, FADD knockdown significantly reduced chelerythrin-induced the level of cleaved caspase-3. CONCLUSION Taken together, our results suggest FADD plays a critical role in post-ischemic heart failure. Inhibition of FADD retards heart failure progression. Our data supports the further investigation of FADD as a potential target for genetic manipulation in the treatment of heart failure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The clinical manifestations of anti-cancer drug associated cardiac side effects are diverse and can range from acutely induced cardiac arrhythmias to Q-T interval prolongation, changes in coronary vasomotion with consecutive myocardial ischemia, myocarditis, pericarditis, severe contractile dysfunction, and potentially fatal heart failure. The pathophysiology of these adverse effects is similarly heterogeneous and the identification of potential mechanisms is frequently difficult since the majority of cancer patients is not only treated with a multitude of cancer drugs but might also be exposed to potentially cardiotoxic radiation therapy. Some of the targets inhibited by new anti-cancer drugs also appear to be important for the maintenance of cellular homeostasis of normal tissue, in particular during exposure to cytotoxic chemotherapy. If acute chemotherapy-induced myocardial damage is only moderate, the process of myocardial remodeling can lead to progressive myocardial dysfunction over years and eventually induce myocardial dysfunction and heart failure. The tools for diagnosing anti-cancer drug associated cardiotoxicity and monitoring patients during chemotherapy include invasive and noninvasive techniques as well as laboratory investigations and are mostly only validated for anthracycline-induced cardiotoxicity and more recently for trastuzumab-associated cardiac dysfunction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

G-protein-coupled receptor kinase 2 (GRK2) is a primary regulator of β-adrenergic signaling in the heart. G-protein-coupled receptor kinase 2 ablation impedes heart failure development, but elucidation of the cellular mechanisms has not been achieved, and such elucidation is the aim of this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies report that intracoronary administration of autologous bone marrow mononucleated cells (BM-MNCs) may improve remodeling of the left ventricle after acute myocardial infarction (AMI). Subgroup analysis suggest that early treatment between days 4 and 7 after AMI is probably most effective; however, the optimal time point of intracoronary cell administration has never been addressed in clinical trials. Furthermore, reliable clinical predictors are lacking for identifying patients who are thought to have most benefit from cellular therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endurance athletes have an increased risk of atrial fibrillation. We performed a longitudinal study on elite runners of the 2010 Jungfrau Marathon, a Swiss mountain marathon, to determine acute effects of long-distance running on the atrial myocardium. Ten healthy male athletes were included and examined 9 to 1 week prior to the race, immediately after, and 1, 5, and 8 days after the race. Mean age was 34.9 ± 4.2 years, and maximum oxygen consumption was 66.8 ± 5.8 mL/kg*min. Mean race time was 243.9 ± 17.7 min. Electrocardiographic-determined signal-averaged P-wave duration (SAPWD) increased significantly after the race and returned to baseline levels during follow-up (128.7 ± 10.9 vs. 137.6 ± 9.8 vs. 131.5 ± 8.6 ms; P < 0.001). Left and right atrial volumes showed no significant differences over time, and there were no correlations of atrial volumes and SAPWD. Prolongation of the SAPWD was accompanied by a transient increase in levels of high-sensitivity C-reactive protein, proinflammatory cytokines, total leucocytes, neutrophil granulocytes, pro atrial natriuretic peptide and high-sensitivity troponin. In conclusion, marathon running was associated with a transient conduction delay in the atria, acute inflammation and increased atrial wall tension. This may reflect exercise-induced atrial myocardial edema and may contribute to atrial remodeling over time, generating a substrate for atrial arrhythmias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rodent model of myocardial infarction (MI) is extensively used in heart failure studies. However, long-term follow-up of echocardiographic left ventricular (LV) function parameters such as the myocardial performance index (MPI) and its ratio with the fractional shortening (LVFS/MPI) has not been validated in conjunction with invasive indexes, such as those derived from the conductance catheter (CC). Sprague-Dawley rats with left anterior descending coronary artery ligation (MI group, n = 9) were compared with a sham-operated control group (n = 10) without MI. Transthoracic echocardiography (TTE) was performed every 2 wk over an 8-wk period, after which classic TTE parameters, especially MPI and LVFS/MPI, were compared with invasive indexes obtained by using a CC. Serial TTE data showed significant alterations in the majority of the noninvasive functional and structural parameters (classic and novel) studied in the presence of MI. Both MPI and LVFS/MPI significantly (P < 0.05 for all reported values) correlated with body weight (r = -0.58 and 0.76 for MPI and LVFS/MPI, respectively), preload recruitable stroke work (r = -0.61 and 0.63), LV end-diastolic pressure (LVEDP) (r = 0.82 and -0.80), end-diastolic volume (r = 0.61 and -0.58), and end-systolic volume (r = 0.46 and -0.48). Forward stepwise linear regression analysis revealed that, of all variables tested, LVEDP was the only independent determinant of MPI (r = 0.84) and LVFS/MPI (r = 0.83). We conclude that MPI and LVFS/MPI correlate strongly and better than the classic noninvasive TTE parameters with established, invasively assessed indexes of contractility, preload, and volumetry. These findings support the use of these two new noninvasive indexes for long-term analysis of the post-MI LV remodeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our purpose was to perform a systematic review and meta-analysis of randomized trials comparing percutaneous coronary intervention (PCI) of the infarct-related artery (IRA) with medical therapy in patients randomized >12 h after acute myocardial infarction (AMI).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Recent studies have shown that mechanically unloading a failing heart may induce reverse remodeling and functional improvement. However, these benefits may be balanced by an unloading-related remodeling including myocardial atrophy that might lead to decrease in function. Using a model of heterotopic heart transplantation, we aimed to characterize the myocardial changes induced by long-term unloading. MATERIAL AND METHODS: Macroscopic as well as cellular and functional changes were followed in normal hearts unloaded for a 3-month period. Microscopic parameters were evaluated with stereologic methodology. Myocardial contractile function was quantified with a Langendorff isolated, perfused heart technique. RESULTS: Atrophy was macroscopically obvious and accompanied by a 67% reduction of the myocyte volume and a 43% reduction of the interstitial tissue volume, thus accounting for a shift of the myocyte/connective tissue ratio in favor of noncontractile tissue. The absolute number of cardiomyocyte nuclei decreased from 64.7 +/- 5.1 x 10(7) in controls to 22.6 +/- 3.7 x 10(7) (30 days) and 21.6 +/- 3.1 x 10(7) (90 days) after unloading (P < .05). The numeric nucleic density in the unloaded myocardium, as well as the mean cardiomyocyte volume per cardiomyocyte nucleus, remained constant throughout the 90 days of observation. Functional data indicated an increase in ventricular stiffness, although contractile function was preserved, as confirmed by unaltered maximal developed pressure and increased contractility (maximum rate of left ventricular pressure development) and relaxation (minimum rate of left ventricular pressure development). CONCLUSION: Atrophic remodeling involves both the myocyte and interstitial tissue compartment. These data suggest that although there is decreased myocardial volume and increased stiffness, contractile capacity is preserved in the long-term unloaded heart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Mechanical unloading of failing hearts can trigger functional recovery but results in progressive atrophy and possibly detrimental adaptation. In an unbiased approach, we examined the dynamic effects of unloading duration on molecular markers indicative of myocardial damage, hypothesizing that potential recovery may be improved by optimized unloading time. METHODS Heterotopically transplanted normal rat hearts were harvested at 3, 8, 15, 30, and 60 days. Forty-seven genes were analyzed using TaqMan-based microarray, Western blot, and immunohistochemistry. RESULTS In parallel with marked atrophy (22% to 64% volume loss at 3 respectively 60 days), expression of myosin heavy-chain isoforms (MHC-α/-β) was characteristically switched in a time-dependent manner. Genes involved in tissue remodeling (FGF-2, CTGF, TGFb, IGF-1) were increasingly upregulated with duration of unloading. A distinct pattern was observed for genes involved in generation of contractile force; an indiscriminate early downregulation was followed by a new steady-state below normal. For pro-apoptotic transcripts bax, bnip-3, and cCasp-6 and -9 mRNA levels demonstrated a slight increase up to 30 days unloading with pronunciation at 60 days. Findings regarding cell death were confirmed on the protein level. Proteasome activity indicated early increase of protein degradation but decreased below baseline in unloaded hearts at 60 days. CONCLUSIONS We identified incrementally increased apoptosis after myocardial unloading of the normal rat heart, which is exacerbated at late time points (60 days) and inversely related to loss of myocardial mass. Our findings suggest an irreversible detrimental effect of long-term unloading on myocardium that may be precluded by partial reloading and amenable to molecular therapeutic intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Intracoronary administration of autologous bone marrow-derived mononuclear cells (BM-MNC) may improve remodeling of the left ventricle (LV) after acute myocardial infarction. The optimal time point of administration of BM-MNC is still uncertain and has rarely been addressed prospectively in randomized clinical trials. METHODS AND RESULTS In a multicenter study, we randomized 200 patients with large, successfully reperfused ST-segment elevation myocardial infarction in a 1:1:1 pattern into an open-labeled control and 2 BM-MNC treatment groups. In the BM-MNC groups, cells were administered either early (i.e., 5 to 7 days) or late (i.e., 3 to 4 weeks) after acute myocardial infarction. Cardiac magnetic resonance imaging was performed at baseline and after 4 months. The primary end point was the change from baseline to 4 months in global LV ejection fraction between the 2 treatment groups and the control group. The absolute change in LV ejection fraction from baseline to 4 months was -0.4±8.8% (mean±SD; P=0.74 versus baseline) in the control group, 1.8±8.4% (P=0.12 versus baseline) in the early group, and 0.8±7.6% (P=0.45 versus baseline) in the late group. The treatment effect of BM-MNC as estimated by ANCOVA was 1.25 (95% confidence interval, -1.83 to 4.32; P=0.42) for the early therapy group and 0.55 (95% confidence interval, -2.61 to 3.71; P=0.73) for the late therapy group. CONCLUSIONS Among patients with ST-segment elevation myocardial infarction and LV dysfunction after successful reperfusion, intracoronary infusion of BM-MNC at either 5 to 7 days or 3 to 4 weeks after acute myocardial infarction did not improve LV function at 4-month follow-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Numerous studies have demonstrated an association between endothelial shear stress (ESS) and neointimal formation after stent implantation. However, the role of ESS on the composition of neointima and underlying plaque remains unclear. METHODS Patients recruited in the Comfortable AMI-IBIS 4 study implanted with bare metal stents (BMS) or biolimus eluting stents (BES) that had biplane coronary angiography at 13month follow-up were included in the analysis. The intravascular ultrasound virtual-histology (IVUS-VH) and the angiographic data were used to reconstruct the luminal surface, and the stent in the stented segments. Blood flow simulation was performed in the stent surface, which was assumed to represent the luminal surface at baseline, to assess the association between ESS and neointima thickness. The predominant ESS was estimated in 3-mm segments and was correlated with the amount of neointima, neointimal tissue composition, and with the changes in the underlying plaque burden and composition. RESULTS Forty three patients (18 implanted with BMS and 25 with BES) were studied. In both stent groups negative correlations were noted between ESS and neointima thickness in BMS (P<0.001) and BES (P=0.002). In BMS there was a negative correlation between predominant ESS and the percentage of the neointimal necrotic core component (P=0.015). In BES group, the limited neointima formation did not allow evaluation of the effect of ESS on its tissue characteristics. ESS did not affect vessel wall remodeling and the plaque burden and composition behind BMS (P>0.10) and BES (P>0.45). CONCLUSIONS ESS determines neointimal formation in both BMS and BES and affects the composition of the neointima in BMS. Conversely, ESS does not impact the plaque behind struts irrespective of stent type throughout 13months of follow-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Mechanisms underlying improvement of myocardial contractile function after cell therapy as well as arrhythmic side effect remain poorly understood. We hypothesised that cell therapy might affect the mechanical properties of isolated host cardiomyocytes. METHODS: Two weeks after myocardial infarction (MI), rats were treated by intramyocardial myoblast injection (SkM, n=8), intramyocardial vehicle injection (Medium, n=6), or sham operation (Sham, n=7). Cardiac function was assessed by echocardiography. Cardiomyocytes were isolated in a modified Langendorff perfusion system, their contraction was measured by video-based inter-sarcomeric analysis. Data were compared with a control-group without myocardial infarction (Control, n=5). RESULTS: Three weeks post-treatment, ejection fraction (EF) further deteriorated in vehicle-injected and non-injected rats (respectively 40.7+/-11.4% to 33+/-5.5% and 41.8+/-8% to 33.5+/-8.3%), but was stabilised in SkM group (35.9+/-6% to 36.4+/-9.7%). Significant cell hypertrophy induced by MI was maintained after cell therapy. Single cell contraction (dL/dt(max)) decreased in SkM and vehicle groups compared to non-injected group as well as cell shortening and relaxation (dL/dt(min)) in vehicle group. A significantly increased predisposition for alternation of strong and weak contractions was observed in isolated cardiomyocytes of the SkM group. CONCLUSION: Our study provides the first evidence that injection of materials into the myocardium alters host cardiomyocytes contractile function independently of the global beneficial effect of the heart function. These findings may be important in understanding possible adverse effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research in rodents demonstrated that psychological stress increases circulating levels of alanine transaminase, aspartate transaminase, and alkaline phosphatase reflecting liver injury. Moreover, chronic posttraumatic stress disorder and transaminases predicted coronary heart disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammation might link posttraumatic stress disorder (PTSD) with an increased risk of cardiovascular events. We explored the association between PTSD and inflammatory biomarkers related to cardiovascular morbidity and the role of co-morbid depressive symptoms in this relationship.