3 resultados para Muscle vibration
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To determine the optimal stochastic whole body vibration (SR-WBV) load modality regarding pelvic floor muscle (PFM) activity in order to complete the SR-WBV training methodology for future PFM training with SR-WBV.
Resumo:
AIM: To investigate the acute effects of stochastic resonance whole body vibration (SR-WBV) training to identify possible explanations for preventive effects against musculoskeletal disorders. METHODS: Twenty-three healthy, female students participated in this quasi-experimental pilot study. Acute physiological and psychological effects of SR-WBV training were examined using electromyography of descending trapezius (TD) muscle, heart rate variability (HRV), different skin parameters (temperature, redness and blood flow) and self-report questionnaires. All subjects conducted a sham SR-WBV training at a low intensity (2 Hz with noise level 0) and a verum SR-WBV training at a higher intensity (6 Hz with noise level 4). They were tested before, during and after the training. Conclusions were drawn on the basis of analysis of variance. RESULTS: Twenty-three healthy, female students participated in this study (age = 22.4 ± 2.1 years; body mass index = 21.6 ± 2.2 kg/m2). Muscular activity of the TD and energy expenditure rose during verum SR-WBV compared to baseline and sham SR-WBV (all P < 0.05). Muscular relaxation after verum SR-WBV was higher than at baseline and after sham SR-WBV (all P < 0.05). During verum SR-WBV the levels of HRV were similar to those observed during sham SR-WBV. The same applies for most of the skin characteristics, while microcirculation of the skin of the middle back was higher during verum compared to sham SR-WBV (P < 0.001). Skin redness showed significant changes over the three measurement points only in the middle back area (P = 0.022). There was a significant rise from baseline to verum SR-WBV (0.86 ± 0.25 perfusion units; P = 0.008). The self-reported chronic pain grade indicators of pain, stiffness, well-being, and muscle relaxation showed a mixed pattern across conditions. Muscle and joint stiffness (P = 0.018) and muscular relaxation did significantly change from baseline to different conditions of SR-WBV (P < 0.001). Moreover, muscle relaxation after verum SR-WBV was higher than after sham SR-WBV (P < 0.05). CONCLUSION: Verum SR-WBV stimulated musculoskeletal activity in young healthy individuals while cardiovascular activation was low. Training of musculoskeletal capacity and immediate increase in musculoskeletal relaxation are potential mediators of pain reduction in preventive trials.
Resumo:
OBJECTIVES: Stochastic resonance whole body vibrations (SR-WBV) may reduce and prevent musculoskeletal problems (MSP). The aim of this study was to evaluate how activities of the lumbar erector spinae (ES) and of the ascending and descending trapezius (TA, TD) change in upright standing position during SR-WBV. METHODS: Nineteen female subjects completed 12 series of 10 seconds of SR-WBV at six different frequencies (2, 4, 6, 8, 10, 12Hz) and two types of "noise"-applications. An assessment at rest had been executed beforehand. Muscle activities were measured with EMG and normalized to the maximum voluntary contraction (MVC%). For statistical testing a three-factorial analysis of variation (ANOVA) was applied. RESULTS: The maximum activity of the respective muscles was 14.5 MVC% for the ES, 4.6 MVC% for the TA (12Hz with "noise" both), and 7.4 MVC% for the TD (10Hz without "noise"). Furthermore, all muscles varied significantly at 6Hz and above (p⋜0.047) compared to the situation at rest. No significant differences were found at SR-WBV with or without "noise". CONCLUSIONS: In general, muscle activity during SR-WBV is reasonably low and comparable to core strength stability exercises, sensorimotor training and "abdominal hollowing" in water. SR-WBV may be a therapeutic option for the relief of MSP.