13 resultados para Muscle Dysfunction

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: Marfan syndrome is a systemic connective tissue disorder caused by mutations in the fibrillin-1 gene. It was originally believed that Marfan syndrome results exclusively from the production of abnormal fibrillin-1 that leads to structurally weaker connective tissue when incorporated into the extracellular matrix. This effect seemed to explain many of the clinical features of Marfan syndrome, including aortic root dilatation and acute aortic dissection, which represent the main causes of morbidity and mortality in Marfan syndrome. METHODS: Recent molecular studies, most based on genetically defined mouse models of Marfan syndrome, have challenged this paradigm. These studies established the critical contribution of fibrillin-1 haploinsufficiency and dysregulated transforming growth factor-beta signaling to disease progression. RESULTS: It seems that many manifestations of Marfan syndrome are less related to a primary structural deficiency of the tissues than to altered morphogenetic and homeostatic programs that are induced by altered transforming growth factor-beta signaling. Most important, transforming growth factor-beta antagonism, through transforming growth factor-beta neutralizing antibodies or losartan (an angiotensin II type 1 receptor antagonist), has been shown to prevent and possibly reverse aortic root dilatation, mitral valve prolapse, lung disease, and skeletal muscle dysfunction in a mouse model of Marfan syndrome. CONCLUSION: There are indicators that losartan, a drug widely used to treat arterial hypertension in humans, offers the first potential for primary prevention of clinical manifestations in Marfan syndrome.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To test the hypothesis that muscle fibers are depolarized in patients with critical illness myopathy by measuring velocity recovery cycles (VRCs) of muscle action potentials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to evaluate microdialysis of the rectus abdominis muscle (RAM) for early detection of subclinical organ dysfunction in a porcine model of critical intra-abdominal hypertension (IAH). Microdialysis catheters for analyses of lactate, pyruvate, and glycerol levels were placed in cervical muscles (control), gastric and jejunal wall, liver, kidney, and RAM of 30 anesthetized mechanically ventilated pigs. Catheters for venous lactate and interleukin 6 samples were placed in the jugular, portal, and femoral vein. Intra-abdominal pressure (IAP) was increased to 20 mmHg (IAH20 group, n = 10) and 30 mmHg (IAH30, n = 10) for 6 h by controlled CO2 insufflation, whereas sham animals (n = 10) exhibited a physiological IAP. In contrast to 20 mmHg, an IAH of 30 mmHg induced pathophysiological alterations consistent with an abdominal compartment syndrome. Microdialysis showed significant increase in the lactate/pyruvate ratio in the RAM of the IAH20 group after 6 h. In the IAH30 group, the strongest increase in lactate/pyruvate ratio was detected in the RAM and less pronounced in the liver and gastric wall. Glycerol increased in the RAM only. After 6 h, there was a significant increase in venous interleukin 6 of the IAH30 group compared with baseline. Venous lactate was increased compared with baseline and shams in the femoral vein of the IAH30 group only. Intra-abdominal pressure-induced ischemic metabolic changes are detected more rapidly and pronounced by microdialysis of the RAM when compared with intra-abdominal organs. Thus, the RAM represents an important and easily accessible site for the early detection of subclinical organ dysfunction during critical IAH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Episodic ataxia type 1 is a neuronal channelopathy caused by mutations in the KCNA1 gene encoding the fast K(+) channel subunit K(v)1.1. Episodic ataxia type 1 presents with brief episodes of cerebellar dysfunction and persistent neuromyotonia and is associated with an increased incidence of epilepsy. In myelinated peripheral nerve, K(v)1.1 is highly expressed in the juxtaparanodal axon, where potassium channels limit the depolarizing afterpotential and the effects of depolarizing currents. Axonal excitability studies were performed on patients with genetically confirmed episodic ataxia type 1 to characterize the effects of K(v)1.1 dysfunction on motor axons in vivo. The median nerve was stimulated at the wrist and compound muscle action potentials were recorded from abductor pollicis brevis. Threshold tracking techniques were used to record strength-duration time constant, threshold electrotonus, current/threshold relationship and the recovery cycle. Recordings from 20 patients from eight kindreds with different KCNA1 point mutations were compared with those from 30 normal controls. All 20 patients had a history of episodic ataxia and 19 had neuromyotonia. All patients had similar, distinctive abnormalities: superexcitability was on average 100% higher in the patients than in controls (P < 0.00001) and, in threshold electrotonus, the increase in excitability due to a depolarizing current (20% of threshold) was 31% higher (P < 0.00001). Using these two parameters, the patients with episodic ataxia type 1 and controls could be clearly separated into two non-overlapping groups. Differences between the different KCNA1 mutations were not statistically significant. Studies of nerve excitability can identify K(v)1.1 dysfunction in patients with episodic ataxia type 1. The simple 15 min test may be useful in diagnosis, since it can differentiate patients with episodic ataxia type 1 from normal controls with high sensitivity and specificity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Andersen-Tawil syndrome (ATS) due to Kir2.1mutations typically manifests as periodic paralysis, cardiac arrhythmias and developmental abnormalities but is often difficult to diagnose clinically. This study was undertaken to determine whether sarcolemmal dysfunction could be identified with muscle velocity recovery cycles (MVRCs).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Sepsis may impair mitochondrial utilization of oxygen. Since hepatic dysfunction is a hallmark of sepsis, we hypothesized that the liver is more susceptible to mitochondrial dysfunction than the peripheral tissues, such as the skeletal muscle. We studied the effect of prolonged endotoxin infusion on liver, muscle and kidney mitochondrial respiration and on hepatosplanchnic oxygen transport and microcirculation in pigs. METHODS: 20 anesthetized pigs were randomized to receive endotoxin or saline infusion for 24 hours. Muscle, liver and kidney mitochondrial respiration was assessed. Cardiac output (thermodilution), carotid, superior mesenteric and kidney arterial, portal venous (ultrasound Doppler) and microcirculatory blood flow (laser Doppler) were measured, and systemic and regional oxygen transport and lactate exchange were calculated. RESULTS: Endotoxin infusion induced hyperdynamic shock and impaired the glutamate- and succinate-dependent mitochondrial respiratory control ratio (RCR) in the liver (glutamate: endotoxemia: median [range] 2.8 [2.3-3.8] vs. controls: 5.3 [3.8-7.0]; p<0.001; succinate: endotoxemia: 2.9 [1.9-4.3] vs. controls: 3.9 [2.6-6.3] p=0.003). While the ADP:O ratio was reduced with both substrates, maximal ATP production was impaired only in the succinate-dependent respiration. Hepatic oxygen consumption and extraction, and liver surface laser Doppler blood flow remained unchanged. Glutamate-dependent respiration in the muscle and kidney was unaffected. CONCLUSIONS: Endotoxemia reduces the efficiency of hepatic but neither skeletal muscle nor kidney mitochondrial respiration, independent of regional and microcirculatory blood flow changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Dysfunction of the nitric oxide pathway is implicated in peripheral arterial disease. Nitric oxide synthase (NOS) isoforms and NOS activity were studied in muscle from patients with critical leg ischaemia (CLI). Alterations in NOS during revascularization surgery were also assessed. METHODS: Muscle biopsies were taken from patients with CLI undergoing amputation and also from patients undergoing femorodistal bypass at the start of surgery, after arterial clamping and following reperfusion. The presence of NOS within muscle sections was confirmed using reduced nicotinamide adenine dinucleotide phosphate diaphorase histochemistry. NOS isoform distribution was studied by immunohistochemistry. NOS mRNA and protein levels were measured using real-time reverse transcriptase-polymerase chain reaction and western blotting. NOS activity was assessed with the citrulline assay. RESULTS: All three NOS isoforms were found in muscle, associated with muscle fibres and microvessels. NOS I and III protein expression was increased in CLI (P = 0.041). During revascularization, further ischaemia and reperfusion led to a rise in NOS III protein levels (P = 0.008). NOS activity was unchanged. CONCLUSION: Alterations in NOS I and III occurred in muscle from patients with CLI and further changes occurred during bypass surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Little explanation is given to patients with temporomandibular disorders and muscles dysfunction on the mechanism and the expected results of conservative treatment. The purpose of this prospective study was to evaluate the efficacy of specific physical therapy prescribed after this explanation was given and also after using a flat occlusal splint adapted only if muscle pain remained after physical therapy. MATERIAL AND METHOD: Twenty-seven patients with temporomandibular joint dysfunction of muscular origin were evaluated after a mean of six sessions of specialized physical therapy with professionals. Patients were treated by oral and facial massages and were trained for self-reeducation. They were also trained for a specific exercise named the "propulsive/opening maneuver". Every patient was questioned on the subjective evolution of pain and the current maximal pain was evaluated with the Visual Analogical Scale (VAS). Clinical evaluation focused on tenderness of masticator muscles and also assessed the changes in the amplitude of mouth opening. RESULTS: Ninety-three percent of the patients treated by specific physical therapy had a significant reduction of their maximal pain feeling (p<0.05). The recovery of an optimal mouth opening without deviation was also improved as was the protrusion. For 33% of the patients a flat nighttime occlusal splint was necessary as a complementary treatment. Twenty-two percent of the patients decided to change their treatment for alternative therapies (osteopathy, acupuncture, etc.). Fifty percent of the patients were convinced of the efficacy of the prescribed treatment. DISCUSSION: Patients who undertake the specific physical therapy and who regularly practice self-physical therapy succeed in relaxing their masticator muscles and in decreasing the level of pain. Explanations given by the doctor concerning the etiology of pain, during temporomandibular joint dysfunction of muscular origin, and the purpose of specific physical therapy increase the capacity of self-relaxation. A flat occlusal splint is indicated for patients who grind their teeth and for those whose pain resists to physical therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Regression of left ventricular (LV) hypertrophy with normalization of diastolic function has been reported in patients with aortic stenosis late after aortic valve replacement (AVR). The purpose of the present study was to evaluate the effect of AVR on LV function and structure in chronic aortic regurgitation early and late after AVR. METHODS AND RESULTS: Twenty-six patients were included in the present analysis. Eleven patients with severe aortic regurgitation were studied before, early (21 months) and late (89 months) after AVR through the use of LV biplane angiograms, high-fidelity pressure measurements, and LV endomyocardial biopsies. Fifteen healthy subjects were used as controls. LV systolic function was determined from biplane ejection fraction and midwall fractional shortening. LV diastolic function was calculated from the time constant of LV relaxation, peak filling rates, and myocardial stiffness constant. LV structure was assessed from muscle fiber diameter, interstitial fibrosis, and fibrous content. LV muscle mass decreased significantly by 38% early and 55% late after surgery. Ejection fraction was significantly reduced preoperatively and did not change after AVR (P=NS). LV relaxation was significantly prolonged before surgery (89+/-28 ms) but was normalized late after AVR (42+/-14 ms). Early and late peak filling rates were increased preoperatively but normalized postoperatively. Diastolic stiffness constant was increased before surgery (22+/-6 versus 9+/-3 in control subjects; P=0.0003) and remained elevated early and late after AVR (23+/-4; P=0.002). Muscle fiber diameter decreased significantly after AVR but remained increased at late follow-up. Interstitial fibrosis was increased preoperatively and increased even further early but decreased late after AVR. Fibrosis was positively linearly correlated to myocardial stiffness and inversely correlated to LV ejection fraction. CONCLUSIONS: Patients with aortic regurgitation show normalization of macroscopic LV hypertrophy late after AVR, although fiber hypertrophy persists. These changes in LV myocardial structure late after AVR are accompanied by a change in passive elastic properties with persistent diastolic dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: Sarcopenia is thought to be associated with mitochondrial (M) loss. It is unclear whether the decrease in M content is consequent to aging per se or to decreased physical activity. Objectives: To examine the influence of fitness on M content and function, and to assess whether exercise could improve M function in older adults. Design and subjects: Three distinct studies were conducted: 1) a cross-sectional observation comparing M content and fitness in a large heterogeneous cohort of older adults; 2) a case-control study comparing chronically endurance-trained older adults (A) and sedentary (S) subjects matched for age and gender; 3) a 4-month exercise intervention in S. Setting: University-based clinical research center Outcomes: M volume density (Mv) was assessed by electron microscopy from vastus lateralis biopsies, electron transport chain proteins (ETC) by western blotting, mRNAs for transcription factors involved in M biogenesis by qRT-PCR and in-vivo oxidative capacity (ATPmax) by (31)P-MR spectroscopy. Peak oxygen uptake (VO2peak) was measured by GXT. Results: VO2peak was strongly correlated with Mv in eighty 60-80 yo adults. Comparison of A vs. S revealed differences in Mv, ATPmax and some ETC complexes. Finally, exercise intervention confirmed that S are able to recover Mv, ATPmax and specific transcription factors. Conclusions: These data suggest that 1) aging per se is not the primary culprit leading to M dysfunction, 2) an aerobic exercise program, even at an older age, can ameliorate the loss in skeletal muscle M content and may prevent aging muscle comorbidities and 3) the improvement of M function is all about content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria. METHODS Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1-100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry. RESULTS In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS). CONCLUSION LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Symptoms associated with pes planovalgus or flatfeet occur frequently, even though some people with a flatfoot deformity remain asymptomatic. Pes planovalgus is proposed to be associated with foot/ankle pain and poor function. Concurrently, the multifactorial weakness of the tibialis posterior muscle and its tendon can lead to a flattening of the longitudinal arch of the foot. Those affected can experience functional impairment and pain. Less severe cases at an early stage are eligible for non-surgical treatment and foot orthoses are considered to be the first line approach. Furthermore, strengthening of arch and ankle stabilising muscles are thought to contribute to active compensation of the deformity leading to stress relief of soft tissue structures. There is only limited evidence concerning the numerous therapy approaches, and so far, no data are available showing functional benefits that accompany these interventions. METHODS After clinical diagnosis and clarification of inclusion criteria (e.g., age 40-70, current complaint of foot and ankle pain more than three months, posterior tibial tendon dysfunction stage I & II, longitudinal arch flattening verified by radiography), sixty participants with posterior tibial tendon dysfunction associated complaints will be included in the study and will be randomly assigned to one of three different intervention groups: (i) foot orthoses only (FOO), (ii) foot orthoses and eccentric exercise (FOE), or (iii) sham foot orthoses only (FOS). Participants in the FOO and FOE groups will be allocated individualised foot orthoses, the latter combined with eccentric exercise for ankle stabilisation and strengthening of the tibialis posterior muscle. Participants in the FOS group will be allocated sham foot orthoses only. During the intervention period of 12 weeks, all participants will be encouraged to follow an educational program for dosed foot load management (e.g., to stop activity if they experience increasing pain). Functional impairment will be evaluated pre- and post-intervention by the Foot Function Index. Further outcome measures include the Pain Disability Index, Visual Analogue Scale for pain, SF-12, kinematic data from 3D-movement analysis and neuromuscular activity during level and downstairs walking. Measuring outcomes pre- and post-intervention will allow the calculation of intervention effects by 3×3 Analysis of Variance (ANOVA) with repeated measures. DISCUSSION The purpose of this randomised trial is to evaluate the therapeutic benefit of three different non-surgical treatment regimens in participants with posterior tibial tendon dysfunction and accompanying pes planovalgus. Furthermore, the analysis of changes in gait mechanics and neuromuscular control will contribute to an enhanced understanding of functional changes and eventually optimise conservative management strategies for these patients. TRIAL REGISTRATION ClinicalTrials.gov Protocol Registration System: ClinicalTrials.gov ID NCT01839669.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscular weakness and muscle wasting may often be observed in critically ill patients on intensive care units (ICUs) and may present as failure to wean from mechanical ventilation. Importantly, mounting data demonstrate that mechanical ventilation itself may induce progressive dysfunction of the main respiratory muscle, i.e. the diaphragm. The respective condition was termed 'ventilator-induced diaphragmatic dysfunction' (VIDD) and should be distinguished from peripheral muscular weakness as observed in 'ICU-acquired weakness (ICU-AW)'. Interestingly, VIDD and ICU-AW may often be observed in critically ill patients with, e.g. severe sepsis or septic shock, and recent data demonstrate that the pathophysiology of these conditions may overlap. VIDD may mainly be characterized on a histopathological level as disuse muscular atrophy, and data demonstrate increased proteolysis and decreased protein synthesis as important underlying pathomechanisms. However, atrophy alone does not explain the observed loss of muscular force. When, e.g. isolated muscle strips are examined and force is normalized for cross-sectional fibre area, the loss is disproportionally larger than would be expected by atrophy alone. Nevertheless, although the exact molecular pathways for the induction of proteolytic systems remain incompletely understood, data now suggest that VIDD may also be triggered by mechanisms including decreased diaphragmatic blood flow or increased oxidative stress. Here we provide a concise review on the available literature on respiratory muscle weakness and VIDD in the critically ill. Potential underlying pathomechanisms will be discussed before the background of current diagnostic options. Furthermore, we will elucidate and speculate on potential novel future therapeutic avenues.