16 resultados para Multipoint covalent immobilization of enzymes

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser tissue welding and soldering is being increasingly used in the clinical setting for defined surgical procedures. The exact induced changes responsible for tensile strength are not yet fully investigated. To further improve the strength of the bonding, a better understanding of the laser impact at the subcellular level is necessary. The goal of this study was to analyze whether the effect of laser irradiation on covalent bonding in pure collagen using irradiances typically applied for tissue soldering. Pure rabbit and equine type I collagen were subjected to laser irradiation. In the first part of the study, rabbit and equine collagen were compared using identical laser and irradiation settings. In the second part of the study, equine collagen was irradiated at increasing laser powers. Changes in covalent bonding were studied indirectly using the sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) technique. Tensile strengths of soldered membranes were measured with a calibrated tensile force gauge. In the first experiment, no differences between the species-specific collagen bands were noted, and no changes in banding were found on SDS-PAGE after laser irradiation. In the second experiment, increasing laser irradiation power showed no effect on collagen banding in SDS-PAGE. Finally, the laser tissue soldering of pure collagen membranes showed virtually no determinable tensile strength. Laser irradiation of pure collagen at typical power settings and exposure times generally used in laser tissue soldering does not induce covalent bonding between collagen molecules. This is true for both rabbit and equine collagen proveniences. Furthermore, soldering of pure collagen membranes without additional cellular components does not achieve the typical tensile strength reported in native, cell-rich tissues. This study is a first step in a better understanding of laser impact at the molecular level and might prove useful in engineering of combined collagen-soldering matrix membranes for special laser soldering applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classical benzodiazepines, for example diazepam, interact with alpha(x)beta(2)gamma(2) GABA(A) receptors, x = 1, 2, 3, 5. Little is known about effects of alpha subunits on the structure of the binding pocket. We studied here the interaction of the covalently reacting diazepam analog 7-Isothiocyanato-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one (NCS compound) with alpha(1)H101Cbeta(2)gamma(2) and with receptors containing the homologous mutation, alpha(2)H101Cbeta(2)gamma(2), alpha(3)H126Cbeta(2)gamma(2) and alpha(5)H105Cbeta(2)gamma(2). This comparison was extended to alpha(6)R100Cbeta(2)gamma(2) receptors as this mutation conveys to these receptors high affinity towards classical benzodiazepines. The interaction was studied at the ligand binding level and at the functional level using electrophysiological techniques. Results indicate that the geometry of alpha(6)R100Cbeta(2)gamma(2) enables best interaction with NCS compound, followed by alpha(3)H126Cbeta(2)gamma(2), alpha(1)H101Cbeta(2)gamma(2) and alpha(2)H101Cbeta(2)gamma(2), while alpha(5)H105Cbeta(2)gamma(2) receptors show little interaction. Our results allow conclusions about the relative apposition of alpha(1)H101 and homologous positions in alpha(2), alpha(3), alpha(5) and alpha(6) with the position occupied by -Cl in diazepam. During this study we found evidence for the presence of a novel site for benzodiazepines that prevents modulation of GABA(A) receptors via the classical benzodiazepine site. The novel site potentially contributes to the high degree of safety to some of these drugs. Our results indicate that this site may be located at the alpha/beta subunit interface pseudo-symmetrically to the site for classical benzodiazepines located at the alpha/gamma interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent findings in the field of biomaterials and tissue engineering provide evidence that surface immobilised growth factors display enhanced stability and induce prolonged function. Cell response can be regulated by material properties and at the site of interest. To this end, we developed scaffolds with covalently bound vascular endothelial growth factor (VEGF) and evaluated their mitogenic effect on endothelial cells in vitro. Nano- (254±133 nm) or micro-fibrous (4.0±0.4 μm) poly(ɛ-caprolactone) (PCL) non-wovens were produced by electrospinning and coated in a radio frequency (RF) plasma process to induce an oxygen functional hydrocarbon layer. Implemented carboxylic acid groups were converted into amine-reactive esters and covalently coupled to VEGF by forming stable amide bonds (standard EDC/NHS chemistry). Substrates were analysed by X-ray photoelectron spectroscopy (XPS), enzyme-linked immuno-assays (ELISA) and immunohistochemistry (anti-VEGF antibody and VEGF-R2 binding). Depending on the reaction conditions, immobilised VEGF was present at 127±47 ng to 941±199 ng per substrate (6mm diameter; concentrations of 4.5 ng mm(-2) or 33.3 ng mm(-2), respectively). Immunohistochemistry provided evidence for biological integrity of immobilised VEGF. Endothelial cell number of primary endothelial cells or immortalised endothelial cells were significantly enhanced on VEGF-functionalised scaffolds compared to native PCL scaffolds. This indicates a sustained activity of immobilised VEGF over a culture period of nine days. We present a versatile method for the fabrication of growth factor-loaded scaffolds at specific concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immobilization of biologically important molecules on myriad nano-sized materials has attracted great attention. Through this study, thermophilic esterase enzyme was obtained using recombinant DNA technology and purified applying one-step His-Select HF nickel affinity gel. The synthesis of chitosan was achieved from chitin by deacetylation process and degree of deacetylation was calculated as 89% by elemental analysis. Chitosan nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. The physicochemical properties of the chitosan and chitosan nanoparticles were determined by several methods including SEM (Scanning Electron Microscopy), FT-IR (Fourier Transform Infrared Spectroscopy) and DLS (Dynamic Light Scattering). The morphology of chitosan nanoparticles was spherical and the nanospheres’ average diameter was 75.3 nm. The purified recombinant esterase was immobilized efficiently by physical adsorption onto chitosan nanoparticles and effects of various immobilization conditions were investigated in details to develope highly cost-effective esterase as a biocatalyst to be utilized in biotechnological purposes. The optimal conditions of immobilization were determined as follows; 1.0 mg/mL of recombinant esterase was immobilized on 1.5 mg chitosan nanoparticles for 30 min at 60°C, pH 7.0 under 100 rpm stirring speed. Under optimized conditions, immobilized recombinant esterase activity yield was 88.5%. The physicochemical characterization of enzyme immobilized chitosan nanoparticles was analyzed by SEM, FT-IR and AFM (Atomic Force Microscopy).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hybrid structure of a synthetic dendronized polymer, two different types of enzymes (superoxide dismutase and horseradish peroxidase), and a fluorescent dye (fluorescein) was synthesized. Thereby, a single polymer chain carried multiple copies of the two enzymes and the fluorescein. The entire attachment chemistry is based on UV/vis-quantifiable bis-aryl hydrazone bond formation that allows direct quantification of bound molecules: 60 superoxide dismutase, 120 horseradish peroxidase, and 20 fluorescein molecules on an average polymer chain of 2000 repeating units. To obtain other enzyme ratios the experimental conditions were altered accordingly. Moreover, it could be shown that both enzymes remained fully active and catalyzed a two-step cascade reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Covalent modifications of proteins often modulate their biological functions or change their subcellular location. Among the many known protein modifications, three are exceptional in that they only occur on single proteins: ethanolamine phosphoglycerol, diphthamide and hypusine. Remarkably, the corresponding proteins carrying these modifications, elongation factor 1A, elongation factor 2 and initiation factor 5A, are all involved in elongation steps of translation. For diphthamide and, in part, hypusine, functional essentiality has been demonstrated, whereas no functional role has been reported so far for ethanolamine phosphoglycerol. We review the biosynthesis, attachment and physiological roles of these unique protein modifications and discuss common and separate features of the target proteins, which represent essential proteins in all organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arterial hypertension in childhood is less frequent as compared to adulthood but is more likely to be secondary to an underlying disorder. After ruling out more obvious causes, some patients still present with strongly suspected secondary hypertension of yet unknown etiology. A number of these children have hypertension due to single gene mutations inherited in an autosomal dominant or recessive fashion. The finding of abnormal potassium levels (low or high) in the presence of suppressed renin secretion, and metabolic alkalosis or acidosis should prompt consideration of these familial diseases. However, mild hypertension and the absence of electrolyte abnormalities do not exclude hereditary conditions. In monogenic hypertensive disorders, three distinct mechanisms leading to the common final pathway of increased sodium reabsorption, volume expansion, and low plasma renin activity are documented. The first mechanism relates to gain-of-function mutations with a subsequent hyperactivity of renal sodium and chloride reabsorption leading to plasma volume expansion (e.g., Liddle's syndrome, Gordon's syndrome). The second mechanism involves deficiencies of enzymes that regulate adrenal steroid hormone synthesis and deactivation (e.g., subtypes of congenital adrenal hyperplasia, apparent mineralocorticoid excess (AME)). The third mechanism is characterized by excessive aldosterone synthesis that escapes normal regulatory mechanisms and leading to volume-dependent hypertension in the presence of suppressed renin release (glucocorticoid remediable aldosteronism). Hormonal studies coupled with genetic testing can help in the early diagnosis of these disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhancing osseointegration through surface immobilization of multiple short peptide sequences that mimic extracellular matrix (ECM) proteins, such as arginine-glycine-aspartic acid (RGD) and lysine-arginine-serine-arginine (KRSR), has not yet been extensively explored. Additionally, the effect of biofunctionalizing chemically modified sandblasted and acid-etched surfaces (modSLA) is unknown. The present study evaluated modSLA implant surfaces modified with RGD and KRSR for potentially enhanced effects on bone apposition and interfacial shear strength during early stages of bone regeneration. Two sets of experimental implants were placed in the maxillae of eight miniature pigs, known for their rapid wound healing kinetics: bone chamber implants creating two circular bone defects for histomorphometric analysis on one side and standard thread configuration implants for removal torque testing on the other side. Three different biofunctionalized modSLA surfaces using poly-L-lysine-graft-poly(ethylene glycol) (PLL-g-PEG) as a carrier minimizing nonspecific protein adsorption [(i) 20 pmol cm⁻² KRSR alone (KRSR); or in combination with RGD in two different concentrations; (ii) 0.05 pmol cm⁻² RGD (KRSR/RGD-1); (iii) 1.26 pmol cm⁻² RGD (KRSR/RGD-2)] were compared with (iv) control modSLA. Animals were sacrificed at 2 weeks. Removal torque values (701.48-780.28 N mm), bone-to-implant contact (BIC) (35.22%-41.49%), and new bone fill (28.58%-30.62%) demonstrated no significant differences among treatments. It may be concluded that biofunctionalizing modSLA surfaces with KRSR and RGD derivatives of PLL-g-PEG polymer does not increase BIC, bone fill, or interfacial shear strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our dynamic capillary electrophoresis model which uses material specific input data for estimation of electroosmosis was applied to investigate fundamental aspects of isoelectric focusing (IEF) in capillaries or microchannels made from bare fused-silica (FS), FS coated with a sulfonated polymer, polymethylmethacrylate (PMMA) and poly(dimethylsiloxane) (PDMS). Input data were generated via determination of the electroosmotic flow (EOF) using buffers with varying pH and ionic strength. Two models are distinguished, one that neglects changes of ionic strength and one that includes the dependence between electroosmotic mobility and ionic strength. For each configuration, the models provide insight into the magnitude and dynamics of electroosmosis. The contribution of each electrophoretic zone to the net EOF is thereby visualized and the amount of EOF required for the detection of the zone structures at a particular location along the capillary, including at its end for MS detection, is predicted. For bare FS, PDMS and PMMA, simulations reveal that EOF is decreasing with time and that the entire IEF process is characterized by the asymptotic formation of a stationary steady-state zone configuration in which electrophoretic transport and electroosmotic zone displacement are opposite and of equal magnitude. The location of immobilization of the boundary between anolyte and most acidic carrier ampholyte is dependent on EOF, i.e. capillary material and anolyte. Overall time intervals for reaching this state in microchannels produced by PDMS and PMMA are predicted to be similar and about twice as long compared to uncoated FS. Additional mobilization for the detection of the entire pH gradient at the capillary end is required. Using concomitant electrophoretic mobilization with an acid as coanion in the catholyte is shown to provide sufficient additional cathodic transport for that purpose. FS capillaries dynamically double coated with polybrene and poly(vinylsulfonate) are predicted to provide sufficient electroosmotic pumping for detection of the entire IEF gradient at the cathodic column end.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA nuclease activity encoded by the end1 gene, and its inactivation by mutation, was described in connection with the characterization of DNA topoisomerases in the fission yeast Schizosaccharomyces pombe (Uemura and Yanagida, 1984). Subsequently, end1 mutant strains were used for the preparation of cell extracts for the study of enzymes and intermediates involved in DNA metabolism. The molecular identification of the end1 gene and its identity with the pnu1 gene is presented. The end1-458 mutation alters glycine to glutamate in the conserved motif TGPYLP. The pnu1 gene codes for an RNase that is induced by nitrogen starvation (Nakashima et al., 2002b). Thus, the End1/Pnu1 protein, like related mitochondrial proteins in other organisms, is an example of a sugar-non-specific nuclease. The analysis of strains carrying a pnu1 deletion revealed no defects in meiotic recombination and spore viability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycerol is one of the few carbon sources that can be utilized by Mycoplasma pneumoniae. Glycerol metabolism involves uptake by facilitated diffusion, phosphorylation, and the oxidation of glycerol 3-phosphate to dihydroxyacetone phosphate, a glycolytic intermediate. We have analyzed the expression of the genes involved in glycerol metabolism and observed constitutive expression irrespective of the presence of glycerol or preferred carbon sources. Similarly, the enzymatic activity of glycerol kinase is not modulated by HPr-dependent phosphorylation. This lack of regulation is unique among the bacteria for which glycerol metabolism has been studied so far. Two types of enzymes catalyze the oxidation of glycerol 3-phosphate: oxidases and dehydrogenases. Here, we demonstrate that the enzyme encoded by the M. pneumoniae glpD gene is a glycerol 3-phosphate oxidase that forms hydrogen peroxide rather than NADH(2). The formation of hydrogen peroxide by GlpD is crucial for cytotoxic effects of M. pneumoniae. A glpD mutant exhibited a significantly reduced formation of hydrogen peroxide and a severely reduced cytotoxicity. Attempts to isolate mutants affected in the genes of glycerol metabolism revealed that only the glpD gene, encoding the glycerol 3-phosphate oxidase, is dispensable. In contrast, the glpF and glpK genes, encoding the glycerol facilitator and the glycerol kinase, respectively, are essential in M. pneumoniae. Thus, the enzymes of glycerol metabolism are crucial for the pathogenicity of M. pneumoniae but also for other essential, yet-to-be-identified functions in the M. pneumoniae cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is unknown how receptor binding by the paramyxovirus attachment proteins (HN, H, or G) triggers the fusion (F) protein to fuse with the plasma membrane for cell entry. H-proteins of the morbillivirus genus consist of a stalk ectodomain supporting a cuboidal head; physiological oligomers consist of non-covalent dimer-of-dimers. We report here the successful engineering of intermolecular disulfide bonds within the central region (residues 91-115) of the morbillivirus H-stalk; a sub-domain that also encompasses the putative F-contacting section (residues 111-118). Remarkably, several intersubunit crosslinks abrogated membrane fusion, but bioactivity was restored under reducing conditions. This phenotype extended equally to H proteins derived from virulent and attenuated morbillivirus strains and was independent of the nature of the contacted receptor. Our data reveal that the morbillivirus H-stalk domain is composed of four tightly-packed subunits. Upon receptor binding, these subunits structurally rearrange, possibly inducing conformational changes within the central region of the stalk, which, in turn, promote fusion. Given that the fundamental architecture appears conserved among paramyxovirus attachment protein stalk domains, we predict that these motions may act as a universal paramyxovirus F-triggering mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human steroid biosynthesis depends on a specifically regulated cascade of enzymes including 3β-hydroxysteroid dehydrogenases (HSD3Bs). Type 2 HSD3B catalyzes the conversion of pregnenolone, 17α-hydroxypregnenolone and dehydroepiandrosterone to progesterone, 17α-hydroxyprogesterone and androstenedione in the human adrenal cortex and the gonads but the exact regulation of this enzyme is unknown. Therefore, specific downregulation of HSD3B2 at adrenarche around age 6-8 years and characteristic upregulation of HSD3B2 in the ovaries of women suffering from the polycystic ovary syndrome remain unexplained prompting us to study the regulation of HSD3B2 in adrenal NCI-H295R cells. Our studies confirm that the HSD3B2 promoter is regulated by transcription factors GATA, Nur77 and SF1/LRH1 in concert and that the NBRE/Nur77 site is crucial for hormonal stimulation with cAMP. In fact, these three transcription factors together were able to transactivate the HSD3B2 promoter in placental JEG3 cells which normally do not express HSD3B2. By contrast, epigenetic mechanisms such as methylation and acetylation seem not involved in controlling HSD3B2 expression. Cyclic AMP was found to exert differential effects on HSD3B2 when comparing short (acute) versus long-term (chronic) stimulation. Short cAMP stimulation inhibited HSD3B2 activity directly possibly due to regulation at co-factor or substrate level or posttranslational modification of the protein. Long cAMP stimulation attenuated HSD3B2 inhibition and increased HSD3B2 expression through transcriptional regulation. Although PKA and MAPK pathways are obvious candidates for possibly transmitting the cAMP signal to HSD3B2, our studies using PKA and MEK1/2 inhibitors revealed no such downstream signaling of cAMP. However, both signaling pathways were clearly regulating HSD3B2 expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erosive demineralisation causes characteristic histological features. In enamel, mineral is dissolved from the surface, resulting in a roughened structure similar to an etching pattern. If the acid impact continues, the initial surface mineral loss turns into bulk tissue loss and with time a visible defect can develop. The microhardness of the remaining surface is reduced, increasing the susceptibility to physical wear. The histology of eroded dentine is much more complex because the mineral component of the tissue is dissolved by acids whereas the organic part is remaining. At least in experimental erosion, a distinct zone of demineralised organic material develops, the thickness of which depends on the acid impact. This structure is of importance for many aspects, e.g. the progression rate or the interaction with active agents and physical impacts, and needs to be considered when quantifying mineral loss. The histology of experimental erosion is increasingly well understood, but there is lack of knowledge about the histology of in vivo lesions. For enamel erosion, it is reasonable to assume that the principal features may be similar, but the fate of the demineralised dentine matrix in the oral cavity is unclear. As dentine lesions normally appear hard clinically, it can be assumed that it is degraded by the variety of enzymes present in the oral cavity. Erosive tooth wear may lead to the formation of reactionary or reparative dentine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs) is very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential (AP). Navs are composed of nine different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the AP and consequently modify nociceptive transmission, a process that is observed in persistent pain conditions. Post-translational modification (PTM) of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B, and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate pain.