6 resultados para Multiple play

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defects in urothelial integrity resulting in leakage and activation of underlying sensory nerves are potential causative factors of bladder pain syndrome, a clinical syndrome of pelvic pain and urinary urgency/frequency in the absence of a specific cause. Herein, we identified the microRNA miR-199a-5p as an important regulator of intercellular junctions. On overexpression in urothelial cells, it impairs correct tight junction formation and leads to increased permeability. miR-199a-5p directly targets mRNAs encoding LIN7C, ARHGAP12, PALS1, RND1, and PVRL1 and attenuates their expression levels to a similar extent. Using laser microdissection, we showed that miR-199a-5p is predominantly expressed in bladder smooth muscle but that it is also detected in mature bladder urothelium and primary urothelial cultures. In the urothelium, its expression can be up-regulated after activation of cAMP signaling pathways. While validating miR-199a-5p targets, we delineated novel functions of LIN7C and ARHGAP12 in urothelial integrity and confirmed the essential role of PALS1 in establishing and maintaining urothelial polarity and junction assembly. The present results point to a possible link between miR-199a-5p expression and the control of urothelial permeability in bladder pain syndrome. Up-regulation of miR-199a-5p and concomitant down-regulation of its multiple targets might be detrimental to the establishment of a tight urothelial barrier, leading to chronic pain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural dynamic processes correlated over several time scales are found in vivo, in stimulus-evoked as well as spontaneous activity, and are thought to affect the way sensory stimulation is processed. Despite their potential computational consequences, a systematic description of the presence of multiple time scales in single cortical neurons is lacking. In this study, we injected fast spiking and pyramidal (PYR) neurons in vitro with long-lasting episodes of step-like and noisy, in-vivo-like current. Several processes shaped the time course of the instantaneous spike frequency, which could be reduced to a small number (1-4) of phenomenological mechanisms, either reducing (adapting) or increasing (facilitating) the neuron's firing rate over time. The different adaptation/facilitation processes cover a wide range of time scales, ranging from initial adaptation (<10 ms, PYR neurons only), to fast adaptation (<300 ms), early facilitation (0.5-1 s, PYR only), and slow (or late) adaptation (order of seconds). These processes are characterized by broad distributions of their magnitudes and time constants across cells, showing that multiple time scales are at play in cortical neurons, even in response to stationary stimuli and in the presence of input fluctuations. These processes might be part of a cascade of processes responsible for the power-law behavior of adaptation observed in several preparations, and may have far-reaching computational consequences that have been recently described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Psoriasis is a chronic immune-mediated skin disease, in which interleukins 12 and 23 have been postulated to play a critical role. However, the cellular source of these cytokines in psoriatic lesions are still poorly defined and their relative contribution in inducing skin inflammation has been discussed controversially. OBJECTIVES: To investigate immunoreactivity of the bioactive forms of IL-12 and IL-23 in plaque psoriasis and to characterize the dendritic cell (DC) and macrophage subsets responsible for the production of these cytokines. METHODS: Immunohistochemistry was performed on normal skin (n=11) as well as non-lesional (n=11) and lesional (n=11) skin of patients with plaque psoriasis using monoclonal antibodies targeting the bioactive forms of IL-12 (IL-12p70) and IL-23 (IL-23p19/p40) on serial cryostat sections using the alkaline phosphatase-antialkaline phosphatase. Co-localization of IL-12 and IL-23 with different dendritic cells and macrophage cell markers (CD1a, CD11c, CD14, CD32, CD68, CD163, CD208/DC-LAMP) was performed using double immunofluorescence staining. RESULTS: Immunoreactivity for IL-12 and IL-23 was significantly enhanced in lesional psoriatic skin as compared to non-lesional and normal skin. No difference was observed between IL-12 and IL-23 immunoreactivity in any skin types. Both IL-12 and IL-23 immunoreactivity was readily detected mainly in CD11c+, CD14+, CD32+, CD68+ and some CD163+, DC-LAMP+ cells. IL-12 and occasionally IL-23 were also found in some CD1a+ dendritic cells. In addition, an enhanced expression mainly of IL-23 was observed in keratinocytes. CONCLUSIONS: Bioactive forms of IL-12 and IL-23 are highly expressed in various DC and macrophage subsets and their marked in situ production suggest that both cytokines have crucial pathogenic role in psoriasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD4(+) T cells play a central role in the pathogenesis of multiple sclerosis (MS). Generation, activation and effector function of these cells crucially depends on their interaction with MHC II-peptide complexes displayed by antigen presenting cells (APC). Processing and presentation of self antigens by different APC therefore influences the disease course at all stages. Selection by thymic APC leads to the generation of autoreactive T cells, which can be activated by peripheral APC. Reactivation by central nervous system APC leads to the initiation of the inflammatory response resulting in demyelination. In this review we will focus on how MHC class II antigenic epitopes are created by different APC from the thymus, the periphery and from the brain, and will discuss the relevance of the balance between creation and destruction of such epitopes in the context of MS. A solid understanding of these processes offers the possibility for designing future therapeutic strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by demyelination and axonal loss. The etiology of MS is unknown; however, environmental and genetic factors play a key role in the development of MS. Diagnostic criteria have been adapted to facilitate earlier diagnosis with increased sensitivity and specificity. Our understanding of the pathophysiology of MS has deepened considerably in recent years, resulting in different therapies to modify the disease course. Furthermore, several drugs have lately shown efficacy in phase III studies and their approval is expected in the near future. As treatment options expand, a future challenge will be to find the optimal treatment for the individual patient. Summary: This mini-review gives an overview of the current knowledge of MS with emphasis on the latest diagnostic criteria and both current and upcoming treatment options. Key Messages: Treatment of MS changes rapidly as the knowledge and therapeutic options in MS expand. Clinical Impact: Diagnosis of MS is based on McDonald criteria. MS therapy can be divided into relapse, disease-modifying and symptomatic treatment. Relapses are commonly treated with intravenous methylprednisolone. First-line therapy consists of either interferon-β, glatiramer acetate or teriflunomide. In general, agents used as escalation therapies (natalizumab, fingolimod and mitoxantrone) are more potent than the agents used for first-line therapy; however, these have potentially serious side effects and should be used with care.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis.