3 resultados para Multicommodity flow algorithms

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil erosion models and soil erosion risk maps are often used as indicators to assess potential soil erosion in order to assist policy decisions. This paper shows the scientific basis of the soil erosion risk map of Switzerland and its application in policy and practice. Linking a USLE/RUSLE-based model approach (AVErosion) founded on multiple flow algorithms and the unit contributing area concept with an extremely precise and high-resolution digital terrain model (2 m × 2 m grid) using GIS allows for a realistic assessment of the potential soil erosion risk, on single plots, i.e. uniform and comprehensive for the agricultural area of Switzerland (862,579 ha in the valley area and the lower mountain regions). The national or small-scale soil erosion prognosis has thus reached a level heretofore possible only in smaller catchment areas or single plots. Validation was carried out using soil loss data from soil erosion damage mappings in the field from long-term monitoring in different test areas. 45% of the evaluated agricultural area of Switzerland was classified as low potential erosion risk, 12% as moderate potential erosion risk, and 43% as high potential erosion risk. However, many of the areas classified as high potential erosion risk are located at the transition from valley to mountain zone, where many areas are used as permanent grassland, which drastically lowers their current erosion risk. The present soil erosion risk map serves on the one hand to identify and prioritise the high-erosion risk areas, and on the other hand to promote awareness amongst farmers and authorities. It was published on the internet and will be made available to the authorities in digital form. It is intended as a tool for simplifying and standardising enforcement of the legal framework for soil erosion prevention in Switzerland. The work therefore provides a successful example of cooperation between science, policy and practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the use of hierarchical clustering of flow cytometry data to classify samples of conventional central chondrosarcoma, a malignant cartilage forming tumor of uncertain cellular origin, according to similarities with surface marker profiles of several known cell types. Human primary chondrosarcoma cells, articular chondrocytes, mesenchymal stem cells, fibroblasts, and a panel of tumor cell lines from chondrocytic or epithelial origin were clustered based on the expression profile of eleven surface markers. For clustering, eight hierarchical clustering algorithms, three distance metrics, as well as several approaches for data preprocessing, including multivariate outlier detection, logarithmic transformation, and z-score normalization, were systematically evaluated. By selecting clustering approaches shown to give reproducible results for cluster recovery of known cell types, primary conventional central chondrosacoma cells could be grouped in two main clusters with distinctive marker expression signatures: one group clustering together with mesenchymal stem cells (CD49b-high/CD10-low/CD221-high) and a second group clustering close to fibroblasts (CD49b-low/CD10-high/CD221-low). Hierarchical clustering also revealed substantial differences between primary conventional central chondrosarcoma cells and established chondrosarcoma cell lines, with the latter not only segregating apart from primary tumor cells and normal tissue cells, but clustering together with cell lines from epithelial lineage. Our study provides a foundation for the use of hierarchical clustering applied to flow cytometry data as a powerful tool to classify samples according to marker expression patterns, which could lead to uncover new cancer subtypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by process-based modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under http://www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws. We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10 m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25 m resolution.