2 resultados para Multi-layering Adsorption

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background During production and processing of multi-walled carbon nanotubes (MWCNTs), they may be inhaled and may enter the pulmonary circulation. It is essential that interactions with involved body fluids like the pulmonary surfactant, the blood and others are investigated, particularly as these interactions could lead to coating of the tubes and may affect their chemical and physical characteristics. The aim of this study was to characterize the possible coatings of different functionalized MWCNTs in a cell free environment. Results To simulate the first contact in the lung, the tubes were coated with pulmonary surfactant and subsequently bound lipids were characterized. The further coating in the blood circulation was simulated by incubating the tubes in blood plasma. MWCNTs were amino (NH2)- and carboxyl (-COOH)-modified, in order to investigate the influence on the bound lipid and protein patterns. It was shown that surfactant lipids bind unspecifically to different functionalized MWCNTs, in contrast to the blood plasma proteins which showed characteristic binding patterns. Patterns of bound surfactant lipids were altered after a subsequent incubation in blood plasma. In addition, it was found that bound plasma protein patterns were altered when MWCNTs were previously coated with pulmonary surfactant. Conclusions A pulmonary surfactant coating and the functionalization of MWCNTs have both the potential to alter the MWCNTs blood plasma protein coating and to determine their properties and behaviour in biological systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Multi-phase postmortem CT angiography (MPMCTA) is increasingly being recognized as a valuable adjunct medicolegal tool to explore the vascular system. Adequate interpretation, however, requires knowledge about the most common technique-related artefacts. The purpose of this study was to identify and index the possible artefacts related to MPMCTA. MATERIAL AND METHODS An experienced radiologist blinded to all clinical and forensic data retrospectively reviewed 49 MPMCTAs. Each angiographic phase, i.e. arterial, venous and dynamic, was analysed separately to identify phase-specific artefacts based on location and aspect. RESULTS Incomplete contrast filling of the cerebral venous system was the most commonly encountered artefact, followed by contrast agent layering in the lumen of the thoracic aorta. Enhancement or so-called oedematization of the digestive system mucosa was also frequently observed. CONCLUSION All MPMCTA artefacts observed and described here are reproducible and easily identifiable. Knowledge about these artefacts is important to avoid misinterpreting them as pathological findings.