3 resultados para Multi-compartment device
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This study assessed the safety and efficacy of a novel implantable device therapy in resistant hypertension patients.
Resumo:
Ligament balancing in total knee arthroplasty may have an important influence on joint stability and prosthesis lifetime. In order to provide quantitative information and assistance during ligament balancing, a device that intraoperatively measures knee joint forces and moments was developed. Its performance and surgical advantages were evaluated on six cadaver specimens mounted on a knee joint loading apparatus allowing unconstrained knee motion as well as compression and varus-valgus loading. Four different experiments were performed on each specimen. (1) Knee joints were axially loaded. Comparison between applied and measured compressive forces demonstrated the accuracy and reliability of in situ measurements (1.8N). (2) Assessment of knee stability based on condyle contact forces or varus-valgus moments were compared to the current surgical method (difference of varus-valgus loads causing condyle lift-off). The force-based approach was equivalent to the surgical method while the moment-based, which is considered optimal, showed a tendency of lateral imbalance. (3) To estimate the importance of keeping the patella in its anatomical position during imbalance assessment, the effect of patellar eversion on the mediolateral distribution of tibiofemoral contact forces was measured. One fourth of the contact force induced by the patellar load was shifted to the lateral compartment. (4) The effect of minor and major medial collateral ligament releases was biomechanically quantified. On average, the medial contact force was reduced by 20% and 46%, respectively. Large variation among specimens reflected the difficulty of ligament release and the need for intraoperative force monitoring. This series of experiments thus demonstrated the device's potential to improve ligament balancing and survivorship of total knee arthroplasty.
Resumo:
BACKGROUND Stroke is a major cause of morbidity and mortality during open-heart surgery. Up to 60% of intraoperative cerebral events are emboli induced. This randomized, controlled, multicenter trial is the first human study evaluating the safety and efficacy of a novel aortic cannula producing simultaneous forward flow and backward suction for extracting solid and gaseous emboli from the ascending aorta and aortic arch upon their intraoperative release. METHODS Sixty-six patients (25 females; 68±10 years) undergoing elective aortic valve replacement surgery, with or without coronary artery bypass graft surgery, were randomized to the use of the CardioGard (CardioGard Medical, Or-Yehuda, Israel) Emboli Protection cannula ("treatment") or a standard ("control") aortic cannula. The primary endpoint was the volume of new brain lesions measured by diffusion-weighted magnetic resonance imaging (DW-MRI), performed preoperatively and postoperatively. Device safety was investigated by comparisons of complications rate, namely neurologic events, stroke, renal insufficiency and death. RESULTS Of 66 patients (34 in the treatment group), 51 completed the presurgery and postsurgery MRI (27 in the treatment group). The volume of new brain lesion for the treatment group was (mean±standard error of the mean) 44.00±64.00 versus 126.56±28.74 mm3 in the control group (p=0.004). Of the treatment group, 41% demonstrated new postoperative lesions versus 66% in the control group (p=0.03). The complication rate was comparable in both groups. CONCLUSIONS The CardioGard cannula is safe and efficient in use during open-heart surgery. Efficacy was demonstrated by the removal of a substantial amount of emboli, a significant reduction in the volume of new brain lesions, and the percentage of patients experiencing new brain lesions.