11 resultados para Multi objective evolutionary algorithms

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cost-efficient operation while satisfying performance and availability guarantees in Service Level Agreements (SLAs) is a challenge for Cloud Computing, as these are potentially conflicting objectives. We present a framework for SLA management based on multi-objective optimization. The framework features a forecasting model for determining the best virtual machine-to-host allocation given the need to minimize SLA violations, energy consumption and resource wasting. A comprehensive SLA management solution is proposed that uses event processing for monitoring and enables dynamic provisioning of virtual machines onto the physical infrastructure. We validated our implementation against serveral standard heuristics and were able to show that our approach is significantly better.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In several regions of the world, climate change is expected to have severe impacts on agricultural systems. Changes in land management are one way to adapt to future climatic conditions, including land-use changes and local adjustments of agricultural practices. In previous studies, options for adaptation have mostly been explored by testing alternative scenarios. Systematic explorations of land management possibilities using optimization approaches were so far mainly restricted to studies of land and resource management under constant climatic conditions. In this study, we bridge this gap and exploit the benefits of multi-objective regional optimization for identifying optimum land management adaptations to climate change. We design a multi-objective optimization routine that integrates a generic crop model and considers two climate scenarios for 2050 in a meso-scale catchment on the Swiss Central Plateau with already limited water resources. The results indicate that adaptation will be necessary in the study area to cope with a decrease in productivity by 0–10 %, an increase in soil loss by 25–35 %, and an increase in N-leaching by 30–45 %. Adaptation options identified here exhibit conflicts between productivity and environmental goals, but compromises are possible. Necessary management changes include (i) adjustments of crop shares, i.e. increasing the proportion of early harvested winter cereals at the expense of irrigated spring crops, (ii) widespread use of reduced tillage, (iii) allocation of irrigated areas to soils with low water-retention capacity at lower elevations, and (iv) conversion of some pre-alpine grasslands to croplands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-objective optimization algorithms aim at finding Pareto-optimal solutions. Recovering Pareto fronts or Pareto sets from a limited number of function evaluations are challenging problems. A popular approach in the case of expensive-to-evaluate functions is to appeal to metamodels. Kriging has been shown efficient as a base for sequential multi-objective optimization, notably through infill sampling criteria balancing exploitation and exploration such as the Expected Hypervolume Improvement. Here we consider Kriging metamodels not only for selecting new points, but as a tool for estimating the whole Pareto front and quantifying how much uncertainty remains on it at any stage of Kriging-based multi-objective optimization algorithms. Our approach relies on the Gaussian process interpretation of Kriging, and bases upon conditional simulations. Using concepts from random set theory, we propose to adapt the Vorob’ev expectation and deviation to capture the variability of the set of non-dominated points. Numerical experiments illustrate the potential of the proposed workflow, and it is shown on examples how Gaussian process simulations and the estimated Vorob’ev deviation can be used to monitor the ability of Kriging-based multi-objective optimization algorithms to accurately learn the Pareto front.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centers from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud Computing enables provisioning and distribution of highly scalable services in a reliable, on-demand and sustainable manner. However, objectives of managing enterprise distributed applications in cloud environments under Service Level Agreement (SLA) constraints lead to challenges for maintaining optimal resource control. Furthermore, conflicting objectives in management of cloud infrastructure and distributed applications might lead to violations of SLAs and inefficient use of hardware and software resources. This dissertation focusses on how SLAs can be used as an input to the cloud management system, increasing the efficiency of allocating resources, as well as that of infrastructure scaling. First, we present an extended SLA semantic model for modelling complex service-dependencies in distributed applications, and for enabling automated cloud infrastructure management operations. Second, we describe a multi-objective VM allocation algorithm for optimised resource allocation in infrastructure clouds. Third, we describe a method of discovering relations between the performance indicators of services belonging to distributed applications and then using these relations for building scaling rules that a CMS can use for automated management of VMs. Fourth, we introduce two novel VM-scaling algorithms, which optimally scale systems composed of VMs, based on given SLA performance constraints. All presented research works were implemented and tested using enterprise distributed applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing workload conditions, such as number of connected users, application performance might suffer, leading to violations of Service Level Agreements (SLA) and possible inefficient use of hardware resources. Combining dynamic application requirements with the increased use of virtualised computing resources creates a challenging resource Management context for application and cloud-infrastructure owners. In such complex environments, business entities use SLAs as a means for specifying quantitative and qualitative requirements of services. There are several challenges in running distributed enterprise applications in cloud environments, ranging from the instantiation of service VMs in the correct order using an adequate quantity of computing resources, to adapting the number of running services in response to varying external loads, such as number of users. The application owner is interested in finding the optimum amount of computing and network resources to use for ensuring that the performance requirements of all her/his applications are met. She/he is also interested in appropriately scaling the distributed services so that application performance guarantees are maintained even under dynamic workload conditions. Similarly, the infrastructure Providers are interested in optimally provisioning the virtual resources onto the available physical infrastructure so that her/his operational costs are minimized, while maximizing the performance of tenants’ applications. Motivated by the complexities associated with the management and scaling of distributed applications, while satisfying multiple objectives (related to both consumers and providers of cloud resources), this thesis proposes a cloud resource management platform able to dynamically provision and coordinate the various lifecycle actions on both virtual and physical cloud resources using semantically enriched SLAs. The system focuses on dynamic sizing (scaling) of virtual infrastructures composed of virtual machines (VM) bounded application services. We describe several algorithms for adapting the number of VMs allocated to the distributed application in response to changing workload conditions, based on SLA-defined performance guarantees. We also present a framework for dynamic composition of scaling rules for distributed service, which used benchmark-generated application Monitoring traces. We show how these scaling rules can be combined and included into semantic SLAs for controlling allocation of services. We also provide a detailed description of the multi-objective infrastructure resource allocation problem and various approaches to satisfying this problem. We present a resource management system based on a genetic algorithm, which performs allocation of virtual resources, while considering the optimization of multiple criteria. We prove that our approach significantly outperforms reactive VM-scaling algorithms as well as heuristic-based VM-allocation approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prevention of psychoses has been intensively investigated within the past two decades, and particularly, prediction has been much advanced. Depending on the applied risk indicators, current criteria are associated with average, yet significantly heterogeneous transition rates of ≥30 % within 3 years, further increasing with longer follow-up periods. Risk stratification offers a promising approach to advance current prediction as it can help to reduce heterogeneity of transition rates and to identify subgroups with specific needs and response patterns, enabling a targeted intervention. It may also be suitable to improve risk enrichment. Current results suggest the future implementation of multi-step risk algorithms combining sensitive risk detection by cognitive basic symptoms (COGDIS) and ultra-high-risk (UHR) criteria with additional individual risk estimation by a prognostic index that relies on further predictors such as additional clinical indicators, functional impairment, neurocognitive deficits, and EEG and structural MRI abnormalities, but also considers resilience factors. Simply combining COGDIS and UHR criteria in a second step of risk stratification produced already a 4-year hazard rate of 0.66. With regard to prevention, two recent meta-analyses demonstrated that preventive measures enable a reduction in 12-month transition rates by 54-56 % with most favorable numbers needed to treat of 9-10. Unfortunately, psychosocial functioning, another important target of preventive efforts, did not improve. However, these results are based on a relatively small number of trials; and more methodologically sound studies and a stronger consideration of individual profiles of clinical needs by modular intervention programs are required

Relevância:

100.00% 100.00%

Publicador:

Resumo:

These guidelines were developed in the context of working block 3 of the DESIRE project. They address the facilitators in the 18 DESIRE study sites and support them in conducting stakeholder workshops aiming at the selection and decision on mitigation strategies to be implemented in the study site context. The decision-making process is supported by a multi-objective decision support system (MODSS) Software called 'Facilitator'.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil degradation is widespread in the Ethiopian Highlands. Its negative impacts on soil productivity contribute to the extreme poverty of the rural population. Soil conservation is propagated as a means of reducing soil erosion, however, it is a costly investment for small-scale farming households. The present study is an attempt to show whether or not selected mechanical Soil and Water Conservation (SWC) technologies are profitable from a farmer’s point of view. A financial Cost-Benefit Analysis (CBA) is carried out to assess whether or not the considered SWC technologies are profitable from a farmer’s point of view. The CBA is supplemented by an evaluation of aspects from the economic and institutional environment. Whether or not soil conservation is profitable from a farmer’s point of view depends on a broad range of factors from the ecological, economic, political, institutional and socio-cultural sphere and also depends on the technology and the prevailing farming system. Because these factors are closely interlinked, it is often not sufficient to change or influence one to make SWC profitable. Several recommendations are formulated with regard to improving the profitability of SWC investments from a farmer’s point of view. Because the reasons for unsustainable resource use are manifold and highly interlinked, only a multi-stakeholder, multi-level and multi-objective approach is likely to offer solutions that address the underlying problems adequately.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a software prototype of a personal digital assistant 2.0. Based on soft computing methods and cognitive computing this mobile application prototype improves calendar and mobility management in cognitive cities. Applying fuzzy cognitive maps and evolutionary algorithms, the prototype represents a next step towards the realization of cognitive cities (i.e., smart cities enhanced with cognition). A user scenario and a test version of the prototype are included for didactical reasons.

Relevância:

40.00% 40.00%

Publicador: