59 resultados para Moving Boundary
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Software is available, which simulates all basic electrophoretic systems, including moving boundary electrophoresis, zone electrophoresis, ITP, IEF and EKC, and their combinations under almost exactly the same conditions used in the laboratory. These dynamic models are based upon equations derived from the transport concepts such as electromigration, diffusion, electroosmosis and imposed hydrodynamic buffer flow that are applied to user-specified initial distributions of analytes and electrolytes. They are able to predict the evolution of electrolyte systems together with associated properties such as pH and conductivity profiles and are as such the most versatile tool to explore the fundamentals of electrokinetic separations and analyses. In addition to revealing the detailed mechanisms of fundamental phenomena that occur in electrophoretic separations, dynamic simulations are useful for educational purposes. This review includes a list of current high-resolution simulators, information on how a simulation is performed, simulation examples for zone electrophoresis, ITP, IEF and EKC and a comprehensive discussion of the applications and achievements.
Resumo:
Dynamic models for electrophoresis are based upon model equations derived from the transport concepts in solution together with user-inputted conditions. They are able to predict theoretically the movement of ions and are as such the most versatile tool to explore the fundamentals of electrokinetic separations. Since its inception three decades ago, the state of dynamic computer simulation software and its use has progressed significantly and Electrophoresis played a pivotal role in that endeavor as a large proportion of the fundamental and application papers were published in this periodical. Software is available that simulates all basic electrophoretic systems, including moving boundary electrophoresis, zone electrophoresis, ITP, IEF and EKC, and their combinations under almost exactly the same conditions used in the laboratory. This has been employed to show the detailed mechanisms of many of the fundamental phenomena that occur in electrophoretic separations. Dynamic electrophoretic simulations are relevant for separations on any scale and instrumental format, including free-fluid preparative, gel, capillary and chip electrophoresis. This review includes a historical overview, a survey of current simulators, simulation examples and a discussion of the applications and achievements of dynamic simulation.
Resumo:
Visual imagery – similar to visual perception – activates feature-specific and category-specific visual areas. This is frequently observed in experiments where the instruction is to imagine stimuli that have been shown immediately before the imagery task. Hence, feature-specific activation could be related to the short-term memory retrieval of previously presented sensory information. Here, we investigated mental imagery of stimuli that subjects had not seen before, eliminating the effects of short-term memory. We recorded brain activation using fMRI while subjects performed a behaviourally controlled guided imagery task in predefined retinotopic coordinates to optimize sensitivity in early visual areas. Whole brain analyses revealed activation in a parieto-frontal network and lateral–occipital cortex. Region of interest (ROI) based analyses showed activation in left hMT/V5+. Granger causality mapping taking left hMT/V5+ as source revealed an imagery-specific directed influence from the left inferior parietal lobule (IPL). Interestingly, we observed a negative BOLD response in V1–3 during imagery, modulated by the retinotopic location of the imagined motion trace. Our results indicate that rule-based motion imagery can activate higher-order visual areas involved in motion perception, with a role for top-down directed influences originating in IPL. Lower-order visual areas (V1, V2 and V3) were down-regulated during this type of imagery, possibly reflecting inhibition to avoid visual input from interfering with the imagery construction. This suggests that the activation in early visual areas observed in previous studies might be related to short- or long-term memory retrieval of specific sensory experiences.
Resumo:
Far from being static transmission units, synapses are highly dynamical elements that change over multiple time scales depending on the history of the neural activity of both the pre- and postsynaptic neuron. Moreover, synaptic changes on different time scales interact: long-term plasticity (LTP) can modify the properties of short-term plasticity (STP) in the same synapse. Most existing theories of synaptic plasticity focus on only one of these time scales (either STP or LTP or late-LTP) and the theoretical principles underlying their interactions are thus largely unknown. Here we develop a normative model of synaptic plasticity that combines both STP and LTP and predicts specific patterns for their interactions. Recently, it has been proposed that STP arranges for the local postsynaptic membrane potential at a synapse to behave as an optimal estimator of the presynaptic membrane potential based on the incoming spikes. Here we generalize this approach by considering an optimal estimator of a non-linear function of the membrane potential and the long-term synaptic efficacy—which itself may be subject to change on a slower time scale. We find that an increase in the long-term synaptic efficacy necessitates changes in the dynamics of STP. More precisely, for a realistic non-linear function to be estimated, our model predicts that after the induction of LTP, causing long-term synaptic efficacy to increase, a depressing synapse should become even more depressing. That is, in a protocol using trains of presynaptic stimuli, as the initial EPSP becomes stronger due to LTP, subsequent EPSPs should become weakened and this weakening should be more pronounced with LTP. This form of redistribution of synaptic efficacies agrees well with electrophysiological data on synapses connecting layer 5 pyramidal neurons.
Resumo:
Three comprehensive one-dimensional simulators were used on the same PC to simulate the dynamics of different electrophoretic configurations, including two migrating hybrid boundaries, an isotachophoretic boundary and the zone electrophoretic separation of ten monovalent anions. Two simulators, SIMUL5 and GENTRANS, use a uniform grid, while SPRESSO uses a dynamic adaptive grid. The simulators differ in the way components are handled. SIMUL5 and SPRESSO feature one equation for all components, whereas GENTRANS is based on the use of separate modules for the different types of monovalent components, a module for multivalent components and a module for proteins. The code for multivalent components is executed more slowly compared to those for monovalent components. Furthermore, with SIMUL5, the computational time interval becomes smaller when it is operated with a reduced calculation space that features moving borders, whereas GENTRANS offers the possibility of using data smoothing (removal of negative concentrations), which can avoid numerical oscillations and speed up a simulation. SPRESSO with its adaptive grid could be employed to simulate the same configurations with smaller numbers of grid points and thus is faster in certain but not all cases. The data reveal that simulations featuring a large number of monovalent components distributed such that a high mesh is required throughout a large proportion of the column are fastest executed with GENTRANS.
Resumo:
Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants facilitated small number generation, whereas rightward and upward displacement facilitated the generation of large numbers. Influences of leftward and rightward motion were also found for the processing of auditorily presented numbers in a magnitude-judgment task (Experiment 2). Additionally, we investigated the reverse effect of the number-space association (Experiment 3). Participants were displaced leftward or rightward and asked to detect motion direction as fast as possible while small or large numbers were auditorily presented. When motion detection was difficult, leftward motion was detected faster when hearing small number and rightward motion when hearing large number. We provide new evidence that bottom-up vestibular activation is sufficient to interact with the higher-order spatial representation underlying numerical cognition. The results show that action planning or motor activity is not necessary to influence spatial attention. Moreover, our results suggest that self-motion perception and numerical cognition can mutually influence each other.
Resumo:
In order to improve the ability to link chemical exposure to toxicological and ecological effects, aquatic toxicology will have to move from observing what chemical concentrations induce adverse effects to more explanatory approaches, that are concepts which build on knowledge of biological processes and pathways leading from exposure to adverse effects, as well as on knowledge on stressor vulnerability as given by the genetic, physiological and ecological (e.g., life history) traits of biota. Developing aquatic toxicology in this direction faces a number of challenges, including (i) taking into account species differences in toxicant responses on the basis of the evolutionarily developed diversity of phenotypic vulnerability to environmental stressors, (ii) utilizing diversified biological response profiles to serve as biological read across for prioritizing chemicals, categorizing them according to modes of action, and for guiding targeted toxicity evaluation; (iii) prediction of ecological consequences of toxic exposure from knowledge of how biological processes and phenotypic traits lead to effect propagation across the levels of biological hierarchy; and (iv) the search for concepts to assess the cumulative impact of multiple stressors. An underlying theme in these challenges is that, in addition to the question of what the chemical does to the biological receptor, we should give increasing emphasis to the question how the biological receptor handles the chemicals, i.e., through which pathways the initial chemical-biological interaction extends to the adverse effects, how this extension is modulated by adaptive or compensatory processes as well as by phenotypic traits of the biological receptor.