7 resultados para Mouse lymphoma assay
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
REASON FOR PERFORMING STUDY: In Europe the incidence of botulism in horses has increased in the last decade due to the growing popularity of haylage feeding. Recombinant vaccines are safer and less expensive to produce and are generally better tolerated than toxoids. OBJECTIVES: To investigate whether the recombinant C-terminal half of the heavy chain of the botulinum neurotoxin C (Hc BoNT/C) in combination with an immunstimulatory adjuvant is an appropriate vaccine candidate for horses by testing its efficacy to induce neutralising antibodies and by comparing its immunogenic properties and adverse reactions to a commercial toxoid vaccine. Formation of oedema and local pain reactions were assessed. ELISA and Western blot assay against Hc BoNT/C and testing of neutralising antibody induction in a mouse protection assay were used to evaluate the immune response. RESULTS: With the recombinant vaccine, only minor local swelling with full recovery after 5 days was noted after brisket injections. The toxoid vaccine produced local, painful reactions with longer recovery periods of up to 2 weeks. Horses vaccinated with either vaccine induced neutralising antibodies after the second booster vaccination, while seroconversion on ELISA and Western blot to Hc BoNT/C was apparent after the first recombinant vaccination, and at various time points in the vaccination schedule in horses that received commercial toxoid vaccine. CONCLUSION: The recombinant vaccine showed fewer adverse reactions compared to the only commercially available vaccine but induced similar concentrations of neutralising antibodies. There was no correlation between the serological response to Hc BoNT/C and the neutralising capacity of serum. POTENTIAL RELEVANCE: Recombinant Hc BoNT/C is an appropriate vaccine candidate to stimulate production of neutralising antibodies against botulinum neurotoxin C in horses and creates only minor local reactions at the injection site.
Resumo:
Botulinum neurotoxins, predominantly serotypes C and D, cause equine botulism through forage poisoning. The C-terminal part of the heavy chain of botulinum neurotoxin types C and D (HcBoNT/C and D) was expressed in Escherichia coli and evaluated as a recombinant mono- and bivalent vaccine in twelve horses in comparison to a commercially available toxoid vaccine. A three-dose subcutaneous immunization of adult horses elicited robust serum antibody response in an ELISA using the immunogen as a capture antigen. Immune sera showed dose-dependent high potency in neutralizing specifically the active BoNT/C and D in the mouse protection assay. The aluminium hydroxide based mono- and bivalent recombinant HcBoNT/C and D vaccines were characterized by good compatibility and the ability to elicit protective antibody titers similar or superior to the commercially available toxoid vaccine.
Resumo:
In recent years, several surveys have highlighted the presence of the rodent carcinogen furan in a variety of food items. Even though the evidence of carcinogenicity of furan is unequivocal, the underlying mechanism has not been fully elucidated. In particular, the role of genotoxicity in furan carcinogenicity is still not clear, even though this information is considered pivotal for the assessment of the risk posed by the presence of low doses of furan in food. In this work, the genotoxic potential of furan in vivo has been investigated in mice, under exposure conditions similar to those associated with cancer onset in the National Toxicology Program long-term bioassay. To this aim, male B6C3F1 mice were treated by gavage for 4 weeks with 2, 4, 8 and 15 mg furan/kg b.w./day. Spleen was selected as the target organ for genotoxicity assessment, in view of the capability of quiescent splenocytes to accumulate DNA damage induced by repeat dose exposure. The induction of primary DNA damage in splenocytes was evaluated by alkaline single-cell gel electrophoresis (comet assay) and by the immunofluorescence detection of foci of phosphorylated histone H2AX (gamma-H2AX). The presence of cross-links was probed in a modified comet assay, in which cells were irradiated in vitro with gamma-rays before electrophoresis. Chromosome damage was quantitated through the detection of micronuclei in mitogen-stimulated splenocytes using the cytokinesis-block method. Micronucleus induction was also assessed with a modified protocol, using the repair inhibitor 1-beta-arabinofuranosyl-cytosine to convert single-strand breaks in micronuclei. The results obtained show a significant (P < 0.01) increase of gamma-H2AX foci in mitogen-stimulated splenocytes of mice treated with 8 and 15 mg furan/kg b.w. and a statistically significant (P < 0.001) increases of micronuclei in binucleated splenocytes cultured in vitro. Conversely, no effect of in vivo exposure to furan was observed when freshly isolated quiescent splenocytes were analysed by immunofluorescence and in comet assays, both with standard and radiation-modified protocols. These results indicate that the in vivo exposure to furan gives rise to pre-mutagenic DNA damage in resting splenocytes, which remains undetectable until it is converted in frank lesions during the S-phase upon mitogen stimulation. The resulting DNA strand breaks are visualized by the increase in gamma-H2AX foci and may originate micronuclei at the subsequent mitosis.
Resumo:
Transgenic mouse models of human cancers represent one of the most promising approaches to elucidate clinically relevant mechanisms of action and provide insights into the treatment efficacy of new antitumor drugs. The use of Trp53 transgenic mice (Trp53 knockout [Trp53(-/-)] mice) for these kinds of studies is, so far, restricted by limitations in detecting developing tumors and the lack of noninvasive tools for monitoring tumor growth, progression, and treatment response.
Resumo:
PURPOSE: Activation of the double-stranded RNA-activated protein kinase (PKR) leads to the induction of various pathways including the down-regulation of translation through phosphorylation of the eukaryotic translation initiation factor 2alpha (eIF-2alpha). There have been no reports to date about the role of PKR in radiation sensitivity. EXPERIMENTAL DESIGN: A clonogenic survival assay was used to investigate the sensitivity of PKR mouse embryo fibroblasts (MEF) to radiation therapy. 2-Aminopurine (2-AP), a chemical inhibitor of PKR, was used to inhibit PKR activation. Nuclear factor-kappaB (NF-kappaB) activation was assessed by electrophoretic mobility shift assay (EMSA). Expression of PKR and downstream targets was examined by Western blot analysis and immunofluorescence. RESULTS: Ionizing radiation leads to dose- and time-dependent increases in PKR expression and function that contributes to increased cellular radiation resistance as shown by clonogenic survival and terminal nucleotidyl transferase-mediated nick end labeling (TUNEL) apoptosis assays. Specific inhibition of PKR with the chemical inhibitor 2-AP restores radiation sensitivity. Plasmid transfection of the PKR wild-type (wt) gene into PKR(-/-) MEFs leads to increased radiation resistance. The protective effect of PKR to radiation may be mediated in part through NF-kappaB and Akt because both NF-kappaB and Akt are activated after ionizing radiation in PKR+/+ but not PKR-/- cells. CONCLUSIONS: We suggest a novel role for PKR as a mediator of radiation resistance modulated in part through the protective effects of NF-kappaB and Akt activation. The modification of PKR activity may be a novel strategy in the future to overcome radiation resistance.
Resumo:
The Notch1 signaling pathway is essential for hematopoietic development. However, the effects of postnatal activation of Notch1 signaling on hematopoietic system is not yet fully understood. We previously generated ZEG‑IC‑Notch1 transgenic mice that have a floxed β‑geo/stop signal between a CMV promoter and intracellular domain of Notch1 (IC‑Notch1). Constitutively active IC‑Notch1 is silent until the introduction of Cre recombinase. In this study, endothelial/hematopoietic specific expression of IC‑Notch1 in double transgenic ZEG‑IC‑Notch1/Tie2‑Cre embryos induced embryonic lethality at E9.5 with defects in vascular system but not in hematopoietic system. Inducible IC‑Notch1 expression in adult mice was achieved by using tetracycline regulated Cre system. The ZEG‑IC‑Notch1/Tie2‑tTA/tet‑O‑Cre triple transgenic mice survived embryonic development when maintained on tetracycline. Post‑natal withdrawal of tetracycline induced expression of IC‑Notch1 transgene in hematopoietic cells of adult mice. The triple transgenic mice displayed extensive T‑cell infiltration in multiple organs and T‑cell malignancy of lymph nodes. In addition, the protein levels of p53 and alternative reading frame (ARF) were decreased in lymphoma‑like neoplasms from the triple transgenic mice while their mRNA expression remained unchanged, suggesting that IC‑Notch1 might repress ARF‑p53 pathway by a post‑transcriptional mechanism. This study demonstrated that activation of constitutive Notch1 signaling after embryonic development alters adult hematopoiesis and induces T‑cell malignancy.
Resumo:
We have analysed the extent of base-pairing interactions between spacer sequences of histone pre-mRNA and U7 snRNA present in the trans-acting U7 snRNP and their importance for histone RNA 3' end processing in vitro. For the efficiently processed mouse H4-12 gene, a computer analysis revealed that additional base pairs could be formed with U7 RNA outside of the previously recognised spacer element (stem II). One complementarity (stem III) is located more 3' and involves nucleotides from the very 5' end of U7 RNA. The other, more 5' located complementarity (stem I) involves nucleotides of the Sm binding site of U7 RNA, a part known to interact with snRNP structural proteins. These potential stem structures are separated from each other by short internal loops of unpaired nucleotides. Mutational analyses of the pre-mRNA indicate that stems II and III are equally important for interaction with the U7 snRNP and for processing, whereas mutations in stem I have moderate effects on processing efficiency, but do not impair complex formation with the U7 snRNP. Thus nucleotides near the processing site may be important for processing, but do not contribute to the assembly of an active complex by forming a stem I structure. The importance of stem III was confirmed by the ability of a complementary mutation in U7 RNA to suppress a stem III mutation in a complementation assay using Xenopus laevis oocytes. The main role of the factor(s) binding to the upstream hairpin loop is to stabilise the U7-pre-mRNA complex. This was shown by either stabilising (by mutation) or destabilising (by increased temperature) the U7-pre-mRNA base-pairing under conditions where hairpin factor binding was either allowed or prevented (by mutation or competition). The hairpin dependence of processing was found to be inversely related to the strength of the U7-pre-mRNA interaction.