9 resultados para Mountain Region (RJ)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Promoting sustainable development in the high mountain region of the Tajik Pamirs is a great challenge in political, economic, social, and ecological terms. The Pamirs, along with other mountain regions in the former Soviet Union, have been particularly affected by economic and political transition after 1991. Using an innovative apporach, the Pamir Strategy Project (PSP) supported stakeholders in their search of solutions an in developing strategies to address the manifold problems they face in their mountain region. The project also contributed to the development of methodological approaches for other mountain regions. The present publication provides a summary of the outcomes of the PSP. It portrays life in the Pamirs, along with development challenges and options, and presents practical an participatory approaches that can lead to sustainable mountain development. In addition, this publication outlines the lessons learnt within the PSP by presenting and evaluationg methods and apporaches such as participatory villages studies, multi-level stakeholder workshops for strategy development, knowledge generation processes, and Geographic Information Systmes as decision support tools for sustainable mountain development.
Resumo:
The UNESCO listing as World Heritage Site confirms the outstanding qualities of the high-mountain region around the Great Aletsch Glacier. The region of the World Heritage Site now faces the responsibility to make these qualities visible and to preserve them for future generations. Consequently the qualities of the site must not be regarded in isolation but in the context of the entire region with its dynamics and developments. Regional monitoring is the observation and evaluation of temporal changes in target variables. It is thus an obligation towards UNESCO, who demands regular reports about the state of the listed World Heritage assets. It also allows statements about sustainable regional development and can be the basis for early recognition of threats to the outstanding qualities. Monitoring programmes face three major challenges: first, great care must be taken in defining the target qualities to be monitored or the monitoring would remain vague. Secondly, the selection of ideal indicators to describe these qualities is impeded by inadequate data quality and availability, compromises are inevitable. Thirdly, there is always an element of insecurity in the interpretation of the results as to what influences and determines the changes in the target qualities. The first survey of the monitoring programme confirmed the exceptional qualities of the region and also highlighted problematic issues.
Resumo:
This paper examines how local communities adapt to climate change and how governance structures can foster or undermine adaptive capacity. Climate change policies, in general, and disaster risk management in mountain regions, in particular, are characterised by their multi-level and multi-sectoral nature during formulation and implementation. The involvement of numerous state and non-state actors at local to national levels produces a variety of networks of interaction and communication. The paper argues that the structure of these relational patterns is critical for understanding adaptive capacity. It thus proposes an expanded concept of adaptive capacity that incorporates (horizontal and vertical) actor integration and communication flow between these actors. The paper further advocates the use of formal social network analysis to assess these relational patterns. Preliminary results from research on adaptation to climate change in a Swiss mountain region vulnerable to floods and other natural hazards illustrate the conceptual and empirical significance of the main arguments.
Resumo:
Modern period long-term human and climatic impacts on a small mire in the Jura Mountains were assessed using testate amoebae, macrofossils and pollen. This multiproxy data analysis permitted detailed interpretations of local and regional environmental change and thus a partial disentanglement of the different variables that influence long-term mire development. From the Middle Ages until a.d. 1700 the mire vegetation was characterised by ferns, Caltha and Vaccinium, but then abruptly changed into the modern vegetation characterised by Cyperaceae, Potentilla and Sphagnum. The cause for this change was most probably deforestation, possibly enhanced by climatic cooling. A decrease in trampling intensity by domestic animals from a.d. 1950 onwards allowed Sphagnum growth and climatic warming in the a.d. 1980s and 1990s may have been responsible for considerable changes in the species composition. The mire investigated is an example of the rapid changes in mire vegetation and peat development that occurred throughout the central European mountain region during the past centuries as a result of changing climate and land-use practice. These processes are still active today and will determine the future development of high-altitude mires.
Resumo:
o reconstruct the vegetation and fire history of the Upper Engadine, two continuous sediment cores from Lej da Champfèr and Lej da San Murezzan (Upper Engadine Valley, southeastern Switzerland) were analysed for pollen, plant macrofossils, charcoal and kerogen. The chronologies of the cores are based on 38 radiocarbon dates. Pollen and macrofossil data suggest a rapid afforestation with Betula, Pinus sylvestris, Pinus cembra, and Larix decidua after the retreat of the glaciers from the lake catchments 11,000 cal years ago. This vegetation type persisted until ca. 7300 cal b.p. (5350 b.c.) when Picea replaced Pinus cembra. Pollen indicative of human impact suggests that in this high-mountain region of the central Alps strong anthropogenic activities began during the Early Bronze Age (3900 cal b.p., 1950 b.c.). Local human settlements led to vegetational changes, promoting the expansion of Larix decidua and Alnus viridis. In the case of Larix, continuing land use and especially grazing after fire led to the formation of Larix meadows. The expansion of Alnus viridis was directly induced by fire, as evidenced by time-series analysis. Subsequently, the process of forest conversion into open landscapes continued for millennia and reached its maximum at the end of the Middle Ages at around 500 cal b.p. (a.d. 1450).
Resumo:
The greater Himalayan region demarcates two of the most prominent linguistic phyla in Asia: Tibeto-Burman and Indo-European. Previous genetic surveys, mainly using Y-chromosome polymorphisms and/or mitochondrial DNA polymorphisms suggested a substantially reduced geneflow between populations belonging to these two phyla. These studies, however, have mainly focussed on populations residing far to the north and/or south of this mountain range, and have not been able to study geneflow patterns within the greater Himalayan region itself. We now report a detailed, linguistically informed, genetic survey of Tibeto-Burman and Indo-European speakers from the Himalayan countries Nepal and Bhutan based on autosomal microsatellite markers and compare these populations with surrounding regions. The genetic differentiation between populations within the Himalayas seems to be much higher than between populations in the neighbouring countries. We also observe a remarkable genetic differentiation between the Tibeto-Burman speaking populations on the one hand and Indo-European speaking populations on the other, suggesting that language and geography have played an equally large role in defining the genetic composition of present-day populations within the Himalayas.
Resumo:
The deglaciation history of the Swiss Alps after the Last Glacial Maximum involved the decay of several ice domes and the subsequent disintegration of valley glaciers at high altitude. Here we use bedrock exposure dating to reconstruct the temporal and spatial pattern of ice retreat at the Simplon Pass (altitude: ∼2000 m) located 40 km southwest of the ‘Rhône ice dome’. Eleven 10Be exposure ages from glacially polished quartz veins and ice-molded bedrock surfaces cluster tightly between 13.5 ± 0.6 ka and 15.4 ± 0.6 ka (internal errors) indicating that the Simplon Pass depression became ice-free at 14.1 ± 0.4 ka (external error of mean age). This age constraint is interpreted to record the melting of the high valley glaciers in the Simplon Pass region during the warm Bølling–Allerød interstadial shortly after the Oldest Dryas stadial. Two bedrock samples collected a few hundred meters above the pass depression yield older 10Be ages of 17.8 ± 0.6 ka and 18.0 ± 0.6 ka. These ages likely reflect the initial downwasting of the Rhône ice dome and the termination of the ice transfluence from the ice dome across the Simplon Pass toward the southern foreland. There, the retreat of the piedmont glacier in Val d’Ossola was roughly synchronous with the decay of the Rhône ice dome in the interior of the mountain belt, as shown by 10Be ages of 17.7 ± 0.9 ka and 16.1 ± 0.6 ka for a whaleback at ∼500 m elevation near Montecrestese in northern Italy. In combination with well-dated paleoclimate records derived from lake sediments, our new age data suggest that during the deglaciation of the European Alps the decay of ice domes was approximately synchronous with the retreat of piedmont glaciers in the foreland and was followed by the melting of high-altitude valley glaciers after the transition from the Oldest Dryas to the Bølling–Allerød, when mean annual temperatures rose rapidly by ∼3 °C.