68 resultados para Motor (Electric) in industry.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Non-invasive excitability studies of motor axons in patients with amyotrophic lateral sclerosis (ALS) have revealed a changing pattern of abnormal membrane properties with disease progression, but the heterogeneity of the changes has made it difficult to relate them to pathophysiology. The SOD1(G93A) mouse model of ALS displays more synchronous motoneuron pathology. Multiple excitability measures of caudal and sciatic nerves in mutant and wild-type mice were compared before onset of signs and during disease progression (4-19 weeks), and they were related to changes in muscle fiber histochemistry. Excitability differences indicated a modest membrane depolarization in SOD1(G93A) axons at about the time of symptom onset (8 weeks), possibly due to deficient energy supply. Previously described excitability changes in ALS patients, suggesting altered sodium and potassium conductances, were not seen in the mice. This suggests that those changes relate to features of the human disease that are not well represented in the animal model.
Resumo:
Altered structural connectivity is a key finding in schizophrenia, but the meaning of white matter alterations for behavior is rarely studied. In healthy subjects, motor activity correlated with white matter integrity in motor tracts. To explore the relation of motor activity and fractional anisotropy (FA) in schizophrenia, we investigated 19 schizophrenia patients and 24 healthy control subjects using Diffusion Tensor Imaging (DTI) and actigraphy on the same day. Schizophrenia patients had lower activity levels (AL). In both groups linear relations of AL and FA were detected in several brain regions. Schizophrenia patients had lower FA values in prefrontal and left temporal clusters. Furthermore, using a general linear model, we found linear negative associations of FA and AL underneath the right supplemental motor area (SMA), the right precentral gyrus and posterior cingulum in patients. This effect within the SMA was not seen in controls. This association in schizophrenia patients may contribute to the well known dysfunctions of motor control. Thus, structural disconnectivity could lead to disturbed motor behavior in schizophrenia.
Resumo:
This study investigated the excitability and accommodative properties of low-threshold human motor axons to test whether these motor axons have greater expression of the persistent Na(+) conductance, I(NaP). Computer-controlled threshold tracking was used to study 22 single motor units and the data were compared with compound motor potentials of various amplitudes recorded in the same experimental session. Detailed comparisons were made between the single units and compound potentials that were 40% or 5% of maximal amplitude, the former because this is the compound potential size used in most threshold tracking studies of axonal excitability, the latter because this is the compound potential most likely to be composed entirely of motor axons with low thresholds to electrical recruitment. Measurements were made of the strength-duration relationship, threshold electrotonus, current-voltage relationship, recovery cycle and latent addition. The findings did not support a difference in I(NaP). Instead they pointed to greater activity of the hyperpolarization-activated inwardly rectifying current (I(h)) as the basis for low threshold to electrical recruitment in human motor axons. Computer modelling confirmed this finding, with a doubling of the hyperpolarization-activated conductance proving the best single parameter adjustment to fit the experimental data. We suggest that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel(s) expressed on human motor axons may be active at rest and contribute to resting membrane potential.
Resumo:
Despite the use of actigraphy in depression research, the association of depression ratings and quantitative motor activity remains controversial. In addition, the impact of recurring episodes on motor activity is uncertain. In 76 medicated inpatients with major depression (27 with a first episode, 49 with recurrent episodes), continuous wrist actigraphy for 24h and scores on the Hamilton Depression Rating Scale (HAMD) were obtained. In addition, 10 subjects of the sample wore the actigraph over a period of 5 days, in order to assess the reliability of a 1-day measurement. Activity levels were stable over 5 consecutive days. Actigraphic parameters did not differ between patients with a first or a recurrent episode, and quantitative motor activity failed to correlate with the HAMD total score. However, of the motor-related single items of the HAMD, the item activities was associated with motor activity parameters, while the items agitation and retardation were not. Actigraphy is consistent with clinical observation for the item activities. Expert raters may not correctly rate the motor aspects of retardation and agitation in major depression.
Resumo:
Motor retardation is a common symptom of major depressive disorder (MDD). Despite the existence of various assessment methods, little is known on the pathobiology of motor retardation. We aimed to elucidate aspects of motor control investigating the association of objective motor activity and resting state cerebral blood flow (CBF).
Resumo:
Little is known about the neurobiology of hypokinesia in schizophrenia. Therefore, the aim of this study was to investigate alterations of white matter motor pathways in schizophrenia and to relate our findings to objectively measured motor activity. We examined 21 schizophrenia patients and 21 healthy controls using diffusion tensor imaging and actigraphy. We applied a probabilistic fibre tracking approach to investigate pathways connecting the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the supplementary motor area proper (SMA-proper), the primary motor cortex (M1), the caudate nucleus, the striatum, the pallidum and the thalamus. Schizophrenia patients had lower activity levels than controls. In schizophrenia we found higher probability indices forming part of a bundle of interest (PIBI) in pathways connecting rACC, pre-SMA and SMA-proper as well as in pathways connecting M1 and pre-SMA with caudate nucleus, putamen, pallidum and thalamus and a reduced spatial extension of motor pathways in schizophrenia. There was a positive correlation between PIBI and activity level in the right pre-SMA-pallidum and the left M1-thalamus connection in healthy controls, and in the left pre-SMA-SMA-proper pathway in schizophrenia. Our results point to reduced volitional motor activity and altered motor pathway organisation in schizophrenia. The identified associations between the amount of movement and structural connectivity of motor pathways suggest dysfunction of cortico-basal ganglia pathways in the pathophysiology of hypokinesia in schizophrenia. Schizophrenia patients may use cortical pathways involving the supplementary motor area to compensate for basal ganglia dysfunction.
Resumo:
Qualitative assessment of spontaneous motor activity in early infancy is widely used in clinical practice. It enables the description of maturational changes of motor behavior in both healthy infants and infants who are at risk for later neurological impairment. These assessments are, however, time-consuming and are dependent upon professional experience. Therefore, a simple physiological method that describes the complex behavior of spontaneous movements (SMs) in infants would be helpful. In this methodological study, we aimed to determine whether time series of motor acceleration measurements at 40-44 weeks and 50-55 weeks gestational age in healthy infants exhibit fractal-like properties and if this self-affinity of the acceleration signal is sensitive to maturation. Healthy motor state was ensured by General Movement assessment. We assessed statistical persistence in the acceleration time series by calculating the scaling exponent α via detrended fluctuation analysis of the time series. In hand trajectories of SMs in infants we found a mean α value of 1.198 (95 % CI 1.167-1.230) at 40-44 weeks. Alpha changed significantly (p = 0.001) at 50-55 weeks to a mean of 1.102 (1.055-1.149). Complementary multilevel regression analysis confirmed a decreasing trend of α with increasing age. Statistical persistence of fluctuation in hand trajectories of SMs is sensitive to neurological maturation and can be characterized by a simple parameter α in an automated and observer-independent fashion. Future studies including children at risk for neurological impairment should evaluate whether this method could be used as an early clinical screening tool for later neurological compromise.
Resumo:
Acetylcholinesterase inhibitors (AChEIs) are effective in the treatment of cognitive symptoms in Alzheimer's disease (AD). Because the behavioral and psychological symptoms of dementia (BPSD) have also been attributed to central cholinergic deficits, we examined whether the AChEI rivastigmine can reduce motor activity as measured in a rater-independent manner by wrist actigraphy in agitated AD patients. A total of 20 consecutive AD inpatients (13 females, 7 males, 80.4+/-9.1 years, S.D.) were included from our geriatric psychiatry unit, all of whom were exhibiting agitated behavior not attributable to delirium. Patients were assigned randomly and in a single-blinded fashion to rivastigmine 3mg or placebo for 14 days. Motor activity levels were monitored using an actigraph worn continuously on the wrist of the non-dominant hand. At the beginning and end of the study, patients were assessed using the Neuropsychiatric Inventory (NPI) and Nurses' Observation Scale for Geriatric Patients (NOSGER). Patients in the rivastigmine group exhibited less agitation than placebo recipients on the NPI-agitation subscale, but not on NOSGER. Actigraphic measurements showed a tendency towards reduced motor activity in the rivastigmine group. Because rivastigmine usually exerts its main effects after a longer period of time, the short-term effects seen in our study justify further controlled clinical trials examining the use of rivastigmine in BPSD by means of actigraphy.
Resumo:
Exercise intolerance may be reported by parents of young children with respiratory diseases. There is, however, a lack of standardized exercise protocols which allow verification of these reports especially in younger children. Consequently the aims of this pilot study were to develop a standardized treadmill walking test for children aged 4-10 years demanding low sensorimotor skills and achieving high physical exhaustion. In a prospective experimental cross sectional pilot study, 33 healthy Caucasian children were separated into three groups: G1 (4-6 years, n = 10), G2 (7-8 years, n = 12), and G3 (9-10 years, n = 11). Children performed the treadmill walking test with increasing exercise levels up to peak condition with maximal exhaustion. Gas exchange, heart rate, and lactate were measured during the test, spirometry before and after. Parameters were statistically calculated at all exercise levels as well as at 2 and 4 mmol/L lactate level for group differences (Kruskal-Wallis H-test, alpha = 0.05; post hoc: Mann-Whitney U-test with Bonferroni correction alpha = 0.05/n) and test-retest differences (Wilcoxon-rank-sum test) with SPSS. The treadmill walking test could be demonstrated to be feasible with a good repeatability within groups for most of the parameters. All children achieved a high exhaustion level. At peak level under exhaustion condition only the absolute VO2 and VCO2 differed significantly between age groups. In conclusion this newly designed treadmill walking test indicates a good feasibility, safety, and repeatability. It suggests the potential usefulness of exercise capacity monitoring for children aged from early 4 to 10 years. Various applications and test modifications will be investigated in further studies.
Resumo:
Given the complex structure of the brain, how can synaptic plasticity explain the learning and forgetting of associations when these are continuously changing? We address this question by studying different reinforcement learning rules in a multilayer network in order to reproduce monkey behavior in a visuomotor association task. Our model can only reproduce the learning performance of the monkey if the synaptic modifications depend on the pre- and postsynaptic activity, and if the intrinsic level of stochasticity is low. This favored learning rule is based on reward modulated Hebbian synaptic plasticity and shows the interesting feature that the learning performance does not substantially degrade when adding layers to the network, even for a complex problem.
Intrinsic activity and positive feedback in motor circuits in organotypic spinal cord slice cultures