48 resultados para Motion-based input

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effects of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Various osteotomy techniques have been developed to correct the deformity caused by slipped capital femoral epiphysis (SCFE) and compared by their clinical outcomes. The aim of the presented study was to compare an intertrochanteric uniplanar flexion osteotomy with a multiplanar osteotomy by their ability to improve postoperative range of motion as measured by simulation of computed tomographic data in patients with SCFE. METHODS: We examined 19 patients with moderate or severe SCFE as classified based on slippage angle. A computer program for the simulation of movement and osteotomy developed in our laboratory was used for study execution. According to a 3-dimensional reconstruction of the computed tomographic data, the physiological range was determined by flexion, abduction, and internal rotation. The multiplanar osteotomy was compared with the uniplanar flexion osteotomy. Both intertrochanteric osteotomy techniques were simulated, and the improvements of the movement range were assessed and compared. RESULTS: The mean slipping and thus correction angles measured were 25 degrees (range, 8-46 degrees) inferior and 54 degrees (range, 32-78 degrees) posterior. After the simulation of multiplanar osteotomy, the virtually measured ranges of motion as determined by bone-to-bone contact were 61 degrees for flexion, 57 degrees for abduction, and 66 degrees for internal rotation. The simulation of the uniplanar flexion osteotomy achieved a flexion of 63 degrees, an abduction of 36 degrees, and an internal rotation of 54 degrees. CONCLUSIONS: Apart from abduction, the improvement in the range of motion by a uniplanar flexion osteotomy is comparable with that of the multiplanar osteotomy. However, the improvement in flexion for the simulation of both techniques is not satisfactory with regard to the requirements of normal everyday life, in contrast to abduction and internal rotation. LEVEL OF EVIDENCE: Level III, Retrospective comparative study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: In stroke patients, neglect diagnostic is often performed by means of paper-pencil cancellation tasks. These tasks entail static stimuli, and provide no information concerning possible changes in the severity of neglect symptoms when patients are confronted with motion. We therefore aimed to directly contrast the cancellation behaviour of neglect patients under static and dynamic conditions. Since visual field deficits often occur in neglect patients, we analysed whether the integrity of the optic radiation would influence cancellation behaviour. METHODS: Twenty-five patients with left spatial neglect after right-hemispheric stroke were tested with a touchscreen cancellation task, once when the evenly distributed targets were stationary, and once when the identic targets moved with constant speed on a random path. The integrity of the right optic radiation was analysed by means of a hodologic probabilistic approach. RESULTS: Motion influenced the cancellation behaviour of neglect patients, and the direction of this influence (i.e., an increase or decrease of neglect severity) was modulated by the integrity of the right optic radiation. In patients with an intact optic radiation, the severity of neglect significantly decreased in the dynamic condition. Conversely, in patients with damage to the optic radiation, the severity of neglect significantly increased in the dynamic condition. CONCLUSION: Motion may influence neglect in stroke patients. The integrity of the optic radiation may be a predictor of whether motion increases or decreases the severity of neglect symptoms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE To reliably determine the amplitude of the transmit radiofrequency ( B1+) field in moving organs like the liver and heart, where most current techniques are usually not feasible. METHODS B1+ field measurement based on the Bloch-Siegert shift induced by a pair of Fermi pulses in a double-triggered modified Point RESolved Spectroscopy (PRESS) sequence with motion-compensated crusher gradients has been developed. Performance of the sequence was tested in moving phantoms and in muscle, liver, and heart of six healthy volunteers each, using different arrangements of transmit/receive coils. RESULTS B1+ determination in a moving phantom was almost independent of type and amplitude of the motion and agreed well with theory. In vivo, repeated measurements led to very small coefficients of variance (CV) if the amplitude of the Fermi pulse was chosen above an appropriate level (CV in muscle 0.6%, liver 1.6%, heart 2.3% with moderate amplitude of the Fermi pulses and 1.2% with stronger Fermi pulses). CONCLUSION The proposed sequence shows a very robust determination of B1+ in a single voxel even under challenging conditions (transmission with a surface coil or measurements in the heart without breath-hold). Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fully controlled liquid injection and flow in hydrophobic polydimethylsiloxane (PDMS) two-dimensional microchannel arrays based on on-chip integrated, low-voltage-driven micropumps are demonstrated. Our architecture exploits the surface-acoustic-wave (SAW) induced counterflow mechanism and the effect of nebulization anisotropies at crossing areas owing to lateral propagating SAWs. We show that by selectively exciting single or multiple SAWs, fluids can be drawn from their reservoirs and moved towards selected positions of a microchannel grid. Splitting of the main liquid flow is also demonstrated by exploiting multiple SAW beams. As a demonstrator, we show simultaneous filling of two orthogonal microchannels. The present results show that SAW micropumps are good candidates for truly integrated on-chip fluidic networks allowing liquid control in arbitrarily shaped two-dimensional microchannel arrays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In schizophrenia, nonverbal behavior, including body movement, is of theoretical and clinical importance. Although reduced nonverbal expressiveness is a major component of the negative symptoms encountered in schizophrenia, few studies have objectively assessed body movement during social interaction. In the present study, 378 brief, videotaped role-play scenes involving 27 stabilized outpatients diagnosed with paranoid-type schizophrenia were analyzed using Motion Energy Analysis (MEA). This method enables the objective measuring of body movement in conjunction with ordinary video recordings. Correlations between movement parameters (percentage of time in movement, movement speed) and symptom ratings from independent PANSS interviews were calculated. Movement parameters proved to be highly reliable. In keeping with predictions, reduced movement and movement speed correlated with negative symptoms. Accordingly, in patients who exhibited noticeable movement for less than 20% of the observation time, prominent negative symptoms were highly probable. As a control measure, the percentage of movement exhibited by the patients during role-play scenes was compared to that of their normal interactants. Patients with negative symptoms differed from normal interactants by showing significantly reduced head and body movement. Two specific positive symptoms were possibly related to movement parameters: suspiciousness tended to correlate with reduced head movement, and the expression of unusual thought content tended to relate to increased movement. Overall, a close and theoretically meaningful association between the objective movement parameters and the symptom profiles was found. MEA appears to be an objective, reliable and valid method for quantifying nonverbal behavior, an aspect which may furnish new insights into the processes related to reduced expressiveness in schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual imagery – similar to visual perception – activates feature-specific and category-specific visual areas. This is frequently observed in experiments where the instruction is to imagine stimuli that have been shown immediately before the imagery task. Hence, feature-specific activation could be related to the short-term memory retrieval of previously presented sensory information. Here, we investigated mental imagery of stimuli that subjects had not seen before, eliminating the effects of short-term memory. We recorded brain activation using fMRI while subjects performed a behaviourally controlled guided imagery task in predefined retinotopic coordinates to optimize sensitivity in early visual areas. Whole brain analyses revealed activation in a parieto-frontal network and lateral–occipital cortex. Region of interest (ROI) based analyses showed activation in left hMT/V5+. Granger causality mapping taking left hMT/V5+ as source revealed an imagery-specific directed influence from the left inferior parietal lobule (IPL). Interestingly, we observed a negative BOLD response in V1–3 during imagery, modulated by the retinotopic location of the imagined motion trace. Our results indicate that rule-based motion imagery can activate higher-order visual areas involved in motion perception, with a role for top-down directed influences originating in IPL. Lower-order visual areas (V1, V2 and V3) were down-regulated during this type of imagery, possibly reflecting inhibition to avoid visual input from interfering with the imagery construction. This suggests that the activation in early visual areas observed in previous studies might be related to short- or long-term memory retrieval of specific sensory experiences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims at the development and evaluation of a personalized insulin infusion advisory system (IIAS), able to provide real-time estimations of the appropriate insulin infusion rate for type 1 diabetes mellitus (T1DM) patients using continuous glucose monitors and insulin pumps. The system is based on a nonlinear model-predictive controller (NMPC) that uses a personalized glucose-insulin metabolism model, consisting of two compartmental models and a recurrent neural network. The model takes as input patient's information regarding meal intake, glucose measurements, and insulin infusion rates, and provides glucose predictions. The predictions are fed to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. An algorithm based on fuzzy logic has been developed for the on-line adaptation of the NMPC control parameters. The IIAS has been in silico evaluated using an appropriate simulation environment (UVa T1DM simulator). The IIAS was able to handle various meal profiles, fasting conditions, interpatient variability, intraday variation in physiological parameters, and errors in meal amount estimations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a kernel density correlation based nonrigid point set matching method and shows its application in statistical model based 2D/3D reconstruction of a scaled, patient-specific model from an un-calibrated x-ray radiograph. In this method, both the reference point set and the floating point set are first represented using kernel density estimates. A correlation measure between these two kernel density estimates is then optimized to find a displacement field such that the floating point set is moved to the reference point set. Regularizations based on the overall deformation energy and the motion smoothness energy are used to constraint the displacement field for a robust point set matching. Incorporating this non-rigid point set matching method into a statistical model based 2D/3D reconstruction framework, we can reconstruct a scaled, patient-specific model from noisy edge points that are extracted directly from the x-ray radiograph by an edge detector. Our experiment conducted on datasets of two patients and six cadavers demonstrates a mean reconstruction error of 1.9 mm

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new approach for reconstructing a patient-specific shape model and internal relative intensity distribution of the proximal femur from a limited number (e.g., 2) of calibrated C-arm images or X-ray radiographs. Our approach uses independent shape and appearance models that are learned from a set of training data to encode the a priori information about the proximal femur. An intensity-based non-rigid 2D-3D registration algorithm is then proposed to deformably fit the learned models to the input images. The fitting is conducted iteratively by minimizing the dissimilarity between the input images and the associated digitally reconstructed radiographs of the learned models together with regularization terms encoding the strain energy of the forward deformation and the smoothness of the inverse deformation. Comprehensive experiments conducted on images of cadaveric femurs and on clinical datasets demonstrate the efficacy of the present approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Spinal fusion is a widely and successfully performed strategy for the treatment of spinal deformities and degenerative diseases. The general approach has been to stabilize the spine with implants so that a solid bony fusion between the vertebrae can develop. However, new implant designs have emerged that aim at preservation or restoration of the motion of the spinal segment. In addition to static, load sharing principles, these designs also require a profound knowledge of kinematic and dynamic properties to properly characterise the in vivo performance of the implants. Methods: To address this, an apparatus was developed that enables the intraoperative determination of the load–displacement behavior of spinal motion segments. The apparatus consists of a sensor-equipped distractor to measure the applied force between the transverse processes, and an optoelectronic camera to track the motion of vertebrae and the distractor. In this intraoperative trial, measurements from two patients with adolescent idiopathic scoliosis with right thoracic curves were made at four motion segments each. Results: At a lateral bending moment of 5 N m, the mean flexibility of all eight motion segments was 0.18 ± 0.08°/N m on the convex side and 0.24 ± 0.11°/N m on the concave side. Discussion: The results agree with published data obtained from cadaver studies with and without axial preload. Intraoperatively acquired data with this method may serve as an input for mathematical models and contribute to the development of new implants and treatment strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients after Legg-Calvé-Perthes disease (LCPD) often develop pain, impaired ROM, abductor weakness, and progression of osteoarthritis (OA) in early adulthood. Based on intraoperative observations during surgical hip dislocation, we established an algorithm for more detailed characterization of the underlying pathomorphologies with a proposed joint-preserving surgical treatment.