3 resultados para Motion recognition

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordinated eye and head movements simultaneously occur to scan the visual world for relevant targets. However, measuring both eye and head movements in experiments allowing natural head movements may be challenging. This paper provides an approach to study eye-head coordination: First, we demonstra- te the capabilities and limits of the eye-head tracking system used, and compare it to other technologies. Second, a beha- vioral task is introduced to invoke eye-head coordination. Third, a method is introduced to reconstruct signal loss in video- based oculography caused by cornea reflection artifacts in order to extend the tracking range. Finally, parameters of eye- head coordination are identified using EHCA (eye-head co- ordination analyzer), a MATLAB software which was developed to analyze eye-head shifts. To demonstrate the capabilities of the approach, a study with 11 healthy subjects was performed to investigate motion behavior. The approach presented here is discussed as an instrument to explore eye-head coordination, which may lead to further insights into attentional and motor symptoms of certain neurological or psychiatric diseases, e.g., schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a solution to the problem of action and gesture recognition using sparse representations. The dictionary is modelled as a simple concatenation of features computed for each action or gesture class from the training data, and test data is classified by finding sparse representation of the test video features over this dictionary. Our method does not impose any explicit training procedure on the dictionary. We experiment our model with two kinds of features, by projecting (i) Gait Energy Images (GEIs) and (ii) Motion-descriptors, to a lower dimension using Random projection. Experiments have shown 100% recognition rate on standard datasets and are compared to the results obtained with widely used SVM classifier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smart homes for the aging population have recently started attracting the attention of the research community. The "health state" of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL) of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR) sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB), support vector machine (SVM) and random forest (RF). Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different homes. Thus, our PIR-based smart home technology could improve care and provide valuable information to better understand the functioning of our societies, as well as to inform both individual and collective action in a smart city scenario.