4 resultados para Monte, Philippe de, 1521-1603.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation for 4 and 6 MeV electron beams of Varian linear accelerators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was a Monte Carlo (MC) based investigation of the impact of different radiation transport methods in collimators of a linear accelerator on photon beam characteristics, dose distributions, and efficiency. Thereby it is investigated if it is possible to use different simplifications in the radiation transport for some clinical situations in order to save calculation time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents the implementation and validation of a dose calculation approach for deforming anatomical objects. Deformation is represented by deformation vector fields leading to deformed voxel grids representing the different deformation scenarios. Particle transport in the resulting deformed voxels is handled through the approximation of voxel surfaces by triangles in the geometry implementation of the Swiss Monte Carlo Plan framework. The focus lies on the validation methodology which uses computational phantoms representing the same physical object through regular and irregular voxel grids. These phantoms are chosen such that the new implementation for a deformed voxel grid can be compared directly with an established dose calculation algorithm for regular grids. Furthermore, separate validation of the aspects voxel geometry and the density changes resulting from deformation is achieved through suitable design of the validation phantom. We show that equivalent results are obtained with the proposed method and that no statistically significant errors are introduced through the implementation for irregular voxel geometries. This enables the use of the presented and validated implementation for further investigations of dose calculation on deforming anatomy.