3 resultados para Monolithic stationary phase

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stationary-phase bacterial cells are characterized by vastly reduced metabolic activities yielding a dormant-like phenotype. Several hibernation programs ensure the establishment and maintenance of this resting growth state. Some of the stationary phase-specific modulations affect the ribosome and its translational activity directly. In stationary-phase Escherichia coli, we observed the appearance of a 16S rRNA fragmentation event at the tip of helix 6 within the small ribosomal subunit (30S). Stationary-phase 30S subunits showed markedly reduced activities in protein biosynthesis. On the other hand, the functional performance of stationary-phase large ribosomal subunits (50S) was indistinguishable from particles isolated from exponentially growing cells. Introduction of the 16S rRNA cut in vitro at helix 6 of exponential phase 30S subunits renders them less efficient in protein biosynthesis. This indicates that the helix 6 fragmentation is necessary and sufficient to attenuate translational activities of 30S ribosomal subunits. These results suggest that stationary phase-specific cleavage of 16S rRNA within the 30S subunit is an efficient means to reduce global translation activities under non-proliferating growth conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A computer simulation study describing the electrophoretic separation and migration of methadone enantiomers in presence of free and immobilized (2-hydroxypropyl)-β-CD is presented. The 1:1 interaction of methadone with the neutral CD was simulated by using experimentally determined mobilities and complexation constants for the complexes in a low-pH BGE comprising phosphoric acid and KOH. The use of complex mobilities represents free solution conditions with the chiral selector being a buffer additive, whereas complex mobilities set to zero provide data that mimic migration and separation with the chiral selector being immobilized, that is CEC conditions in absence of unspecific interaction between analytes and the chiral stationary phase. Simulation data reveal that separations are quicker, electrophoretic displacement rates are reduced, and sensitivity is enhanced in CEC with on-column detection in comparison to free solution conditions. Simulation is used to study electrophoretic analyte behavior at the interface between sample and the CEC column with the chiral selector (analyte stacking) and at the rear end when analytes leave the environment with complexation (analyte destacking). The latter aspect is relevant for off-column analyte detection in CEC and is described here for the first time via the dynamics of migrating analyte zones. Simulation provides insight into means to counteract analyte dilution at the column end via use of a BGE with higher conductivity. Furthermore, the impact of EOF on analyte migration, separation, and detection for configurations with the selector zone being displaced or remaining immobilized under buffer flow is simulated. In all cases, the data reveal that detection should occur within or immediately after the selector zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dual-phase time projection chambers (TPCs) filled with the liquid noble gas xenon (LXe) are currently the most sensitive detectors searching for interactions of WIMP dark matter in a laboratory-based experiment. This is achieved by combining a large, monolithic dark matter target of a very low background with the capability to localize the interaction vertex in three dimensions, allowing for target fiducialization and multiple-scatter rejection. The background in dual-phase LXe TPCs is further reduced by the simultaneous measurement of the scintillation and ionization signal from a particle interaction, which is used to distinguish signal from background signatures. This article reviews the principle of dual-phase LXe TPCs, and provides an overview about running as well as future experimental efforts.