8 resultados para Monoculture

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of competition between similar species in driving community assembly is much debated. Recently, phylogenetic patterns in species composition have been investigated to help resolve this question: phylogenetic clustering is taken to imply environmental filtering, and phylogenetic overdispersion to indicate limiting similarity between species. We used experimental plant communities with random species compositions and initially even abundance distributions to examine the development of phylogenetic pattern in species abundance distributions. Where composition was held constant by weeding, abundance distributions became overdispersed through time, but only in communities that contained distantly related clades, some with several species (i.e., a mix of closely and distantly related species). Phylogenetic pattern in composition therefore constrained the development of overdispersed abundance distributions, and this might indicate limiting similarity between close relatives and facilitation/complementarity between distant relatives. Comparing the phylogenetic patterns in these communities with those expected from the monoculture abundances of the constituent species revealed that interspecific competition caused the phylogenetic patterns. Opening experimental communities to colonization by all species in the species pool led to convergence in phylogenetic diversity. At convergence, communities were composed of several distantly related but species-rich clades and had overdispersed abundance distributions. This suggests that limiting similarity processes determine which species dominate a community but not which species occur in a community. Crucially, as our study was carried out in experimental communities, we could rule out local evolutionary or dispersal explanations for the patterns and identify ecological processes as the driving force, underlining the advantages of studying these processes in experimental communities. Our results show that phylogenetic relations between species provide a good guide to understanding community structure and add a new perspective to the evidence that niche complementarity is critical in driving community assembly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine the potential inhalatory risk posed by carbon nanotubes (CNTs), a tier-based approach beginning with an in vitro assessment must be adopted. The purpose of this study therefore was to compare 4 commonly used in vitro systems of the human lung (human blood monocyte-derived macrophages [MDM] and monocyte-derived dendritic cells [MDDC], 16HBE14o- epithelial cells, and a sophisticated triple cell co-culture model [TCC-C]) via assessment of the biological impact of different CNTs (single-walled CNTs [SWCNTs] and multiwalled CNTs [MWCNTs]) over 24h. No significant cytotoxicity was observed with any of the cell types tested, although a significant (p < .05), dose-dependent increase in tumor necrosis factor (TNF)-α following SWCNT and MWCNT exposure at concentrations up to 0.02mg/ml to MDM, MDDC, and the TCC-C was found. The concentration of TNF-α released by the MDM and MDDC was significantly higher (p < .05) than the TCC-C. Significant increases (p < .05) in interleukin (IL)-8 were also found for both 16HBE14o- epithelial cells and the TCC-C after SWCNTs and MWCNTs exposure up to 0.02mg/ml. The TCC-C, however, elicited a significantly (p < .05) higher IL-8 release than the epithelial cells. The oxidative potential of both SWCNTs and MWCNTs (0.005-0.02mg/ml) measured by reduced glutathione (GSH) content showed a significant difference (p < .05) between each monoculture and the TCC-C. It was concluded that because only the co-culture system could assess each endpoint adequately, that, in comparison with monoculture systems, multicellular systems that take into consideration important cell type-to-cell type interactions could be used as predictive in vitro screening tools for determining the potential deleterious effects associated with CNTs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cocoa-based small-scale agriculture is the most important source of income for most farming families in the region of Alto Beni in the sub-humid foothills of the Andes. Cocoa is grown in cultivation systems of varying ecological complexity. The plantations are highly susceptible to climate change impacts. Local cocoa producers mention heat waves, droughts, floods and plant diseases as the main impacts affecting plants and working conditions, and they associate these impacts with global climate change. From a sustainable regional development point of view, cocoa farms need to become more resilient in order to cope with the climate change related effects that are putting cocoa-based livelihoods at risk. This study assesses agroecosystem resilience under three different cocoa cultivation systems (successional agroforestry, simple agroforestry and common practice monocultures). In a first step, farmers’ perceptions of climate change impacts were assessed and eight indicators of agroecological resilience were derived in a transdisciplinary process (focus groups and workshop) based on farmers’ and scientists’ knowledge. These indicators (soil organic matter, depth of Ah horizon, soil bulk density, tree species diversity, crop varieties diversity, ant species diversity, cocoa yields and infestation of cocoa trees with Moniliophthora perniciosa) were then surveyed on 15 cocoa farms and compared for the three different cultivation systems. Parts of the socio-economic aspects of resilience were covered by evaluating the role of cocoa cooperatives and organic certification in transitioning to more resilient cocoa farms (interviews with 15 cocoa farmers combined with five expert interviews). Agroecosystem resilience was higher under the two agroforestry systems than under common practice monoculture, especially under successional agroforestry. Both agroforestry systems achieved higher cocoa yields than common practice monoculture due to agroforestry farmers’ enhanced knowledge regarding cocoa cultivation. Knowledge sharing was promoted by local organizations facilitating organic certification. These organizations were thus found to enhance the social process of farmers’ integration into cooperatives and their reorientation toward organic principles and diversified agroforestry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study compares aboveground and belowground carbon stocks and tree diversity in different cocoa cultivation systems in Bolivia: monoculture, simple agroforestry, and successional agroforestry, as well as fallow as a control. Since diversified, agroforestry-based cultivation systems are often considered important for sustainable development, we also evaluated the links between carbon stocks and tree diversity, as well as the role of organic certification in transitioning from monoculture to agroforestry. Biomass, tree diversity, and soil physiochemical parameters were sampled in 15 plots measuring 48 × 48 m. Semi-structured interviews with 52 cocoa farmers were used to evaluate the role of organic certification and farmers’ organizations (e.g., cocoa cooperatives) in promoting tree diversity. Total carbon stocks in simple agroforestry systems (128.4 ± 20 Mg ha−1) were similar to those on fallow plots (125.2 ± 10 Mg ha−1). Successional agroforestry systems had the highest carbon stocks (143.7 ± 5.3 Mg ha−1). Monocultures stored significantly less carbon than all other systems (86.3 ± 4.0 Mg ha−1, posterior probability P(Diff > 0) of 0.000–0.006). Among shade tree species, Schizolobium amazonicum, Centrolobium ochroxylum, and Anadenanthera sp. accumulated the most biomass. High-value timber species (S. amazonicum, C. ochroxylum, Amburana cearensis, and Swietenia macrophylla) accounted for 22.0 % of shade tree biomass. The Shannon index and tree species richness were highest in successional agroforestry systems. Cocoa plots on certified organic farms displayed significantly higher tree species richness than plots on non-certified farms. Thus, expanding the coverage of organic farmers’ organizations may be an effective strategy for fostering transitions from monoculture to agroforestry systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer is responsible for millions of deaths worldwide and the variability in disease patterns calls for patient-specific treatment. Therefore, personalized treatment is expected to become a daily routine in prospective clinical tests. In addition to genetic mutation analysis, predictive chemosensitive assays using patient's cells will be carried out as a decision making tool. However, prior to their widespread application in clinics, several challenges linked to the establishment of such assays need to be addressed. To best predict the drug response in a patient, the cellular environment needs to resemble that of the tumor. Furthermore, the formation of homogeneous replicates from a scarce amount of patient's cells is essential to compare the responses under various conditions (compound and concentration). Here, we present a microfluidic device for homogeneous spheroid formation in eight replicates in a perfused microenvironment. Spheroid replicates from either a cell line or primary cells from adenocarcinoma patients were successfully created. To further mimic the tumor microenvironment, spheroid co-culture of primary lung cancer epithelial cells and primary pericytes were tested. A higher chemoresistance in primary co-culture spheroids compared to primary monoculture spheroids was found when both were constantly perfused with cisplatin. This result is thought to be due to the barrier created by the pericytes around the tumor spheroids. Thus, this device can be used for additional chemosensitivity assays (e.g. sequential treatment) of patient material to further approach the personalized oncology field.