79 resultados para Molecular mechanisms

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca2+ signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eosinophil extracellular traps (EETs) are part of the innate immune response and are seen in multiple infectious, allergic, and autoimmune eosinophilic diseases. EETs are composed of a meshwork of DNA fibers and eosinophil granule proteins, such as major basic protein (MBP) and eosinophil cationic protein (ECP). Interestingly, the DNA within the EETs appears to have its origin in the mitochondria of eosinophils, which had released most their mitochondrial DNA, but were still viable, exhibiting no evidence of a reduced life span. Multiple eosinophil activation mechanisms are represented, whereby toll-like, cytokine, chemokine, and adhesion receptors can all initiate transmembrane signal transduction processes leading to the formation of EETs. One of the key signaling events required for DNA release is the activation of the NADPH oxidase. Here, we review recent progress made in the understanding the molecular mechanisms involved in DNA and granule protein release, discuss the presence of EETs in disease, speculate on their potential role(s) in pathogenesis, and compare available data on other DNA-releasing cells, particularly neutrophils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Channelopathies are diseases caused by dysfunctional ion channels, due to either genetic or acquired pathological factors. Inherited cardiac arrhythmic syndromes are among the most studied human disorders involving ion channels. Since seminal observations made in 1995, thousands of mutations have been found in many of the different genes that code for cardiac ion channel subunits and proteins that regulate the cardiac ion channels. The main phenotypes observed in patients carrying these mutations are congenital long QT syndrome (LQTS), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), short QT syndrome (SQTS) and variable types of conduction defects (CD). The goal of this review is to present an update of the main genetic and molecular mechanisms, as well as the associated phenotypes of cardiac channelopathies as of 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the healthy individuum lymphocyte traffic into the central nervous system (CNS) is very low and tightly controlled by the highly specialized blood-brain barrier (BBB). In contrast, under inflammatory conditions of the CNS such as in multiple sclerosis or in its animal model experimental autoimmune encephalomyelitis (EAE) circulating lymphocytes and monocytes/macrophages readily cross the BBB and gain access to the CNS leading to edema, inflammation and demyelination. Interaction of circulating leukocytes with the endothelium of the blood-spinal cord and blood-brain barrier therefore is a critical step in the pathogenesis of inflammatory diseases of the CNS. Leukocyte/endothelial interactions are mediated by adhesion molecules and chemokines and their respective chemokine receptors. We have developed a novel spinal cord window preparation, which enables us to directly visualize CNS white matter microcirculation by intravital fluorescence videomicroscopy. Applying this technique of intravital fluorescence videomicroscopy we could provide direct in vivo evidence that encephalitogenic T cell blasts interact with the spinal cord white matter microvasculature without rolling and that alpha4-integrin mediates the G-protein independent capture and subsequently the G-protein dependent adhesion strengthening of T cell blasts to microvascular VCAM-1. LFA-1 was found to neither mediate the G-protein independent capture nor the G- protein dependent initial adhesion strengthening of encephalitogenic T cell blasts within spinal cord microvessel, but was rather involved in T cell extravasation across the vascular wall into the spinal cord parenchyme. Our observation that G-protein mediated signalling is required to promote adhesion strengthening of encephalitogenic T cells on BBB endothelium in vivo suggested the involvement of chemokines in this process. We found functional expression of the lymphoid chemokines CCL19/ELC and CCL21/SLC in CNS venules surrounded by inflammatory cells in brain and spinal cord sections of mice afflicted with EAE suggesting that the lymphoid chemokines CCL19 and CCL21 besides regulating lymphocyte homing to secondary lymphoid tissue might be involved in T lymphocyte migration into the immuneprivileged CNS during immunosurveillance and chronic inflammation. Here, I summarize our current knowledge on the sequence of traffic signals involved in T lymphocyte recruitment across the healthy and inflamed blood-brain and blood-spinal cord barrier based on our in vitro and in vivo investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endothelial blood–brain barrier (BBB) and the epithelial blood–cerebrospinal fluid barrier protect the CNS from the constantly changing milieu within the bloodstream. The BBB strictly controls immune cell entry into the CNS, which is rare under physiological conditions. During a variety of pathological conditions of the CNS, such as viral or bacterial infections, or during inflammatory diseases, such as multiple sclerosis, immunocompetent cells readily traverse the BBB and subsequently enter the CNS parenchyma. Most of the available information on immune cell entry into the CNS is derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Consequently, our current knowledge on traffic signals mediating immune cell entry across the BBB during immunosurveillance and disease results mainly from experimental data in the EAE model. Therefore, a large part of this review summarizes these findings. Similarly, the potential benefits and risks associated with therapeutic targeting of immune cell trafficking across the BBB will be discussed in the context of multiple sclerosis, since elucidation of the molecular mechanisms relevant to this disease have largely relied on the use of its in vivo model, EAE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycoplasma mycoides subsp. mycoides SC, the aetiological agent of contagious bovine pleuropneumonia (CBPP), is considered the most pathogenic of the Mycoplasma species. Its virulence is probably the result of a coordinated action of various components of an antigenically and functionally dynamic surface architecture. The different virulence attributes allow the pathogen to evade the host's immune defence, adhere tightly to the host cell surface, persist and disseminate in the host causing mycoplasmaemia, efficiently import energetically valuable nutrients present in the environment, and release and simultaneously translocate toxic metabolic pathway products to the host cell where they cause cytotoxic effects that are known to induce inflammatory processes and disease. This strategy enables the mycoplasma to exploit the minimal genetic information in its small genome, not only to fulfil the basic functions for its replication but also to damage host cells in intimate proximity thereby acquiring the necessary bio-molecules, such as amino acids and nucleic acid precursors, for its own biosynthesis and survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximately 3.6% of cancers worldwide derive from chronic alcohol drinking, including those of the upper aerodigestive tract, the liver, the colorectum and the breast. Although the mechanisms for alcohol-associated carcinogenesis are not completely understood, most recent research has focused on acetaldehyde, the first and most toxic ethanol metabolite, as a cancer-causing agent. Ethanol may also stimulate carcinogenesis by inhibiting DNA methylation and by interacting with retinoid metabolism. Alcohol-related carcinogenesis may interact with other factors such as smoking, diet and comorbidities, and depends on genetic susceptibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen is the basic molecule which supports life and it truly is “god's gift to life.” Despite its immense importance, research on “oxygen biology” has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word “hypoxia.” Scientists have focused on hypoxia-induced transcriptomics and molecular–cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous insect herbivores can take up and store plant toxins as self-defense against their own natural enemies. Plant toxin sequestration is tightly linked with tolerance strategies that keep the toxins functional. Specific transporters have been identified that likely allow the herbivore to control the spatiotemporal dynamics of toxin accumulation. Certain herbivores furthermore possess specific enzymes to boost the bioactivity of the sequestered toxins. Ecologists have studied plant toxin sequestration for decades. The recently uncovered molecular mechanisms in combination with transient, non-transgenic systems to manipulate insect gene expression will help to understand the importance of toxin sequestration for food-web dynamics in nature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The growing knowledge on physiology, cell biology and biochemistry of the reproductive organs has provided many insights into molecular mechanisms that are required for successful reproduction. Research directed at the investigation of reproduction physiology in domestic animals was hampered in the past by a lack of species-specific genomic information. The genome sequences of dog, cattle and horse have become publicly available in 2005, 2006 and 2007 respectively. Although the gene content of mammalian genomes is generally very similar, genes involved in reproduction tend to be less conserved than the average mammalian gene. The availability of genome sequences provides a valuable resource to check whether any protein that may be known from human or mouse research is present in cattle and/or horse as well. Currently there are more than 200 genes known that are involved in the production of fertile sperm cells. Great progress has been made in the understanding of genetic aberrations that lead to male infertility. Additionally, the first genetic mechanisms are being discovered that contribute to the quantitative variation of fertility traits in fertile male animals. Here, I will review some selected aspects of genetic research in male fertility and offer some perspectives for the use of genomic sequence information.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Morbidity and mortality associated with bacterial meningitis remain high, although antibiotic therapy has improved during recent decades. The major intracranial complications of bacterial meningitis are cerebrovascular arterial and venous involvement, brain edema, and hydrocephalus with a subsequent increase of intracranial pressure. Experiments in animal models and cell culture systems have focused on the pathogenesis and pathophysiology of bacterial meningitis in an attempt to identify the bacterial and/or host factors responsible for brain injury during the course of infection. An international workshop entitled "Bacterial Meningitis: Mechanisms of Brain Injury" was organized by the Department of Neurology at the University of Munich and was held in Eibsee, Germany, in June 1993. This conference provided a forum for the exchange of current information on bacterial meningitis, including data on the clinical spectrum of complications, the associated morphological alterations, the role of soluble inflammatory mediators (in particular cytokines) and of leukocyte-endothelial cell interactions in tissue injury, and the molecular mechanisms of neuronal injury, with potential mediators such as reactive oxygen species, reactive nitrogen species, and excitatory amino acids. It is hoped that a better understanding of the pathophysiological events that take place during bacterial meningitis will lead to the development of new therapeutic regimens.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background The optimal defence hypothesis (ODH) predicts that tissues that contribute most to a plant's fitness and have the highest probability of being attacked will be the parts best defended against biotic threats, including herbivores. In general, young sink tissues and reproductive structures show stronger induced defence responses after attack from pathogens and herbivores and contain higher basal levels of specialized defensive metabolites than other plant parts. However, the underlying physiological mechanisms responsible for these developmentally regulated defence patterns remain unknown. Scope This review summarizes current knowledge about optimal defence patterns in above- and below-ground plant tissues, including information on basal and induced defence metabolite accumulation, defensive structures and their regulation by jasmonic acid (JA). Physiological regulations underlying developmental differences of tissues with contrasting defence patterns are highlighted, with a special focus on the role of classical plant growth hormones, including auxins, cytokinins, gibberellins and brassinosteroids, and their interactions with the JA pathway. By synthesizing recent findings about the dual roles of these growth hormones in plant development and defence responses, this review aims to provide a framework for new discoveries on the molecular basis of patterns predicted by the ODH. Conclusions Almost four decades after its formulation, we are just beginning to understand the underlying molecular mechanisms responsible for the patterns of defence allocation predicted by the ODH. A requirement for future advances will be to understand how developmental and defence processes are integrated.