2 resultados para Modular Group
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We show that global properties of gauge groups can be understood as geometric properties in M-theory. Different wrappings of a system of N M5-branes on a torus reduce to four-dimensional theories with AN−1 gauge algebra and different unitary groups. The classical properties of the wrappings determine the global properties of the gauge theories without the need to impose any quantum conditions. We count the inequivalent wrappings as they fall into orbits of the modular group of the torus, which correspond to the S-duality orbits of the gauge theories.
Resumo:
Virus-like particles (VLPs) are non-infectious self-assembling nanoparticles, useful in medicine and nanotechnology. Their repetitive molecularly-defined architecture is attractive for engineering multivalency, notably for vaccination. However, decorating VLPs with target-antigens by genetic fusion or chemical modification is time-consuming and often leads to capsid misassembly or antigen misfolding, hindering generation of protective immunity. Here we establish a platform for irreversibly decorating VLPs simply by mixing with protein antigen. SpyCatcher is a genetically-encoded protein designed to spontaneously form a covalent bond to its peptide-partner SpyTag. We expressed in E. coli VLPs from the bacteriophage AP205 genetically fused to SpyCatcher. We demonstrated quantitative covalent coupling to SpyCatcher-VLPs after mixing with SpyTag-linked to malaria antigens, including CIDR and Pfs25. In addition, we showed coupling to the VLPs for peptides relevant to cancer from epidermal growth factor receptor and telomerase. Injecting SpyCatcher-VLPs decorated with a malarial antigen efficiently induced antibody responses after only a single immunization. This simple, efficient and modular decoration of nanoparticles should accelerate vaccine development, as well as other applications of nanoparticle devices.