4 resultados para Model violation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We study lepton flavor observables in the Standard Model (SM) extended with all dimension-6 operators which are invariant under the SM gauge group. We calculate the complete one-loop predictions to the radiative lepton decays μ → eγ, τ → μγ and τ → eγ as well as to the closely related anomalous magnetic moments and electric dipole moments of charged leptons, taking into account all dimension-6 operators which can generate lepton flavor violation. Also the 3-body flavor violating charged lepton decays τ ± → μ ± μ + μ −, τ ± → e ± e + e −, τ ± → e ± μ + μ −, τ ± → μ ± e + e −, τ ± → e ∓ μ ± μ ±, τ ± → μ ∓ e ± e ± and μ ± → e ± e + e − and the Z 0 decays Z 0 → ℓ+iℓ−j are considered, taking into account all tree-level contributions.
Resumo:
BACKGROUND: In contrast to hypnosis, there is no surrogate parameter for analgesia in anesthetized patients. Opioids are titrated to suppress blood pressure response to noxious stimulation. The authors evaluated a novel model predictive controller for closed-loop administration of alfentanil using mean arterial blood pressure and predicted plasma alfentanil concentration (Cp Alf) as input parameters. METHODS: The authors studied 13 healthy patients scheduled to undergo minor lumbar and cervical spine surgery. After induction with propofol, alfentanil, and mivacurium and tracheal intubation, isoflurane was titrated to maintain the Bispectral Index at 55 (+/- 5), and the alfentanil administration was switched from manual to closed-loop control. The controller adjusted the alfentanil infusion rate to maintain the mean arterial blood pressure near the set-point (70 mmHg) while minimizing the Cp Alf toward the set-point plasma alfentanil concentration (Cp Alfref) (100 ng/ml). RESULTS: Two patients were excluded because of loss of arterial pressure signal and protocol violation. The alfentanil infusion was closed-loop controlled for a mean (SD) of 98.9 (1.5)% of presurgery time and 95.5 (4.3)% of surgery time. The mean (SD) end-tidal isoflurane concentrations were 0.78 (0.1) and 0.86 (0.1) vol%, the Cp Alf values were 122 (35) and 181 (58) ng/ml, and the Bispectral Index values were 51 (9) and 52 (4) before surgery and during surgery, respectively. The mean (SD) absolute deviations of mean arterial blood pressure were 7.6 (2.6) and 10.0 (4.2) mmHg (P = 0.262), and the median performance error, median absolute performance error, and wobble were 4.2 (6.2) and 8.8 (9.4)% (P = 0.002), 7.9 (3.8) and 11.8 (6.3)% (P = 0.129), and 14.5 (8.4) and 5.7 (1.2)% (P = 0.002) before surgery and during surgery, respectively. A post hoc simulation showed that the Cp Alfref decreased the predicted Cp Alf compared with mean arterial blood pressure alone. CONCLUSION: The authors' controller has a similar set-point precision as previous hypnotic controllers and provides adequate alfentanil dosing during surgery. It may help to standardize opioid dosing in research and may be a further step toward a multiple input-multiple output controller.
Resumo:
In several extensions of the Standard Model, the top quark can decay into a bottom quark and a light charged Higgs boson H+, t -> bH(+), in addition to the Standard Model decay t -> bW. Since W bosons decay to the three lepton generations equally, while H+ may predominantly decay into tau nu, charged Higgs bosons can be searched for using the violation of lepton universality in top quark decays. The analysis in this paper is based on 4.6 fb(-1) of proton-proton collision data at root s = 7 TeV collected by the ATLAS experiment at the Large Hadron Collider. Signatures containing leptons (e or mu) and/or a hadronically decaying tau (tau(had)) are used. Event yield ratios between e+ tau(had) and e + mu, as well as between mu + tau(had) and mu + e, final states are measured in the data and compared to predictions from simulations. This ratio-based method reduces the impact of systematic uncertainties in the analysis. No significant deviation from the Standard Model predictions is observed. With the assumption that the branching fraction B(H+ -> tau nu) is 100%, upper limits in the range 3.2%-4.4% can be placed on the branching fraction B(t -> bH(+)) for charged Higgs boson masses m(H+) in the range 90-140GeV. After combination with results from a search for charged Higgs bosons in t (t) over bar decays using the tau(had) + jets final state, upper limits on B(t -> bH(+)) can be set in the range 0.8%-3.4%, for m(H+) in the range 90-160GeV.
Resumo:
Compared to μ→eγ and μ→eee, the process μ→e conversion in nuclei receives enhanced contributions from Higgs-induced lepton flavor violation. Upcoming μ→e conversion experiments with drastically increased sensitivity will be able to put extremely stringent bounds on Higgs-mediated μ→e transitions. We point out that the theoretical uncertainties associated with these Higgs effects, encoded in the couplings of quark scalar operators to the nucleon, can be accurately assessed using our recently developed approach based on SU(2) chiral perturbation theory that cleanly separates two- and three-flavor observables. We emphasize that with input from lattice QCD for the coupling to strangeness fNs, hadronic uncertainties are appreciably reduced compared to the traditional approach where fNs is determined from the pion-nucleon σ term by means of an SU(3) relation. We illustrate this point by considering Higgs-mediated lepton flavor violation in the standard model supplemented with higher-dimensional operators, the two-Higgs-doublet model with generic Yukawa couplings, and the minimal supersymmetric standard model. Furthermore, we compare bounds from present and future μ→e conversion and μ→eγ experiments.