8 resultados para Mode-matched Thermal lens
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PURPOSE: The present pilot study evaluates the histopathological characteristics and suitability of CO2 and diode lasers for performing excisional biopsies in the buccal mucosa with special emphasis on the extent of the thermal damage zone created. PATIENTS AND METHODS: 15 patients agreed to undergo surgical removal of their fibrous hyperplasias with a laser. These patients were randomly assigned to one diode or two CO2 laser groups. The CO2 laser was used in a continuous wave mode (cw) with a power of 5 W (Watts), and in a pulsed char-free mode (cf). Power settings for the diode laser were 5.12 W in a pulsed mode. The thermal damage zone of the three lasers and intraoperative and postoperative complications were assessed and compared. RESULTS: The collateral thermal damage zone on the borders of the excisional biopsies was significantly smaller with the CO, laser for both settings tested compared to the diode laser regarding values in pm or histopathological index scores. The only intraoperative complication encountered was bleeding, which had to be controlled with electrocauterization. No postoperative complications occurred in any of the three groups. CONCLUSIONS: The CO2 laser seems to be appropriate for excisional biopsies of benign oral mucosal lesions. The CO2 laser offers clear advantages in terms of smaller thermal damage zones over the diode laser. More study participants are needed to demonstrate potential differences between the two different CO2 laser settings tested.
Resumo:
Studies about the influence of patient characteristics on mechanical failure of cups in total hip replacement have applied different methodologies and revealed inconclusive results. The fixation mode has rarely been investigated. Therefore, we conducted a detailed analysis of the influence of patient characteristics and fixation mode on cup failure risks.
Resumo:
Animal studies of excisional biopsies have shown less thermal damage when a carbon dioxide (CO(2)) laser (10.6 μm) is used in a char-free (CF) mode than in a continuous-wave (CW) mode. The authors' aim was to evaluate and compare clinical and histopathologic findings of excisional biopsies performed with CW and CF CO(2) laser (10.6 μm) modes.
Resumo:
The default-mode network (DMN) was shown to have aberrant blood oxygenation-level-dependent (BOLD) activity in major depressive disorder (MDD). While BOLD is a relative measure of neural activity, cerebral blood flow (CBF) is an absolute measure. Resting-state CBF alterations have been reported in MDD. However, the association of baseline CBF and CBF fluctuations is unclear in MDD. Therefore, the aim was to investigate the CBF within the DMN in MDD, applying a strictly data-driven approach. In 22 MDD patients and 22 matched healthy controls, CBF was acquired using arterial spin labeling (ASL) at rest. A concatenated independent component analysis was performed to identify the DMN within the ASL data. The perfusion of the DMN and its nodes was quantified and compared between groups. The DMN was identified in both groups with high spatial similarity. Absolute CBF values within the DMN were reduced in MDD patients (p<0.001). However, after controlling for whole-brain gray matter CBF and age, the group difference vanished. In patients, depression severity was correlated with reduced perfusion in the DMN in the posterior cingulate cortex and the right inferior parietal lobe. Hypoperfusion within the DMN in MDD is not specific to the DMN. Still, depression severity was linked to DMN node perfusion, supporting a role of the DMN in depression pathobiology. The finding has implications for the interpretation of BOLD functional magnetic resonance imaging data in MDD.
Resumo:
The goal of this study was to assess the feasibility, safety and success of a system which uses radiofrequency energy (RFE) rather than a device for percutaneous closure of patent foramen ovale (PFO). METHODS: Sixteen patients (10 men, 6 women, mean age 50 years) were included in the study. All of them had a proven PFO with documented right-to-left shunt (RLS) after Valsalva manoeuvre (VM) during transoesophageal echocardiography (TEE). The patients had an average PFO diameter of 6 +/- 2 mm at TEE and an average of 23 +/- 4 microembolic signals (MES) in power M-mode transcranial Doppler sonography (pm-TCD), measured over the middle cerebral artery. An atrial septal aneurysm (ASA) was present in 7 patients (44%). Balloon measurement, performed in all patients, revealed a stretched PFO diameter of 8 +/- 3 mm. In 2 patients (stretched diameter 11 and 14 mm respectively, both with ASA >10 mm), radiofrequency was not applied (PFO too large) and the PFO was closed with an Amplatzer PFO occluder instead. A 6-month follow-up TEE was performed in all patients. RESULTS: There were no serious adverse events during the procedure or at follow-up (12 months average). TEE 6 months after the first RFE procedure showed complete closure of the PFO in 50% of the patients (7/14). Closure appeared to be influenced by PFO diameter, complete closure being achieved in 89% (7/8) with a balloon-stretched diameter < or =7 mm but in none of the patients >7 mm. Only one of the complete closure patients had an ASA. Of the remainder, 4 (29%) had an ASA. Although the PFO was not completely closed in this group, some reduction in the diameter of the PFO and in MES was documented by TEE and pm-TCD with VM. Five of the 7 residual shunt patients received an Amplatzer PFO occluder. Except for one patient with a minimal residual shunt, all showed complete closure of PFO at 6-month follow-up TEE and pm-TCD with VM. The other two refused a closure device. CONCLUSIONS: The results confirm that radiofrequency closure of the PFO is safe albeit less efficacious and more complex than device closure. The technique in its current state should not be attempted in patients with a balloon-stretched PFO diameter >7 mm and an ASA.
Resumo:
Computer-aided surgery (CAS) allows for real-time intraoperative feedback resulting in increased accuracy, while reducing intraoperative radiation. CAS is especially useful for the treatment of certain pelvic ring fractures, which necessitate the precise placement of screws. Flouroscopy-based CAS modules have been developed for many orthopedic applications. The integration of the isocentric flouroscope even enables navigation using intraoperatively acquired three-dimensional (3D) data, though the scan volume and imaging quality are limited. Complicated and comprehensive pathologies in regions like the pelvis can necessitate a CT-based navigation system because of its larger field of view. To be accurate, the patient's anatomy must be registered and matched with the virtual object (CT data). The actual precision within the region of interest depends on the area of the bone where surface matching is performed. Conventional surface matching with a solid pointer requires extensive soft tissue dissection. This contradicts the primary purpose of CAS as a minimally invasive alternative to conventional surgical techniques. We therefore integrated an a-mode ultrasound pointer into the process of surface matching for pelvic surgery and compared it to the conventional method. Accuracy measurements were made in two pelvic models: a foam model submerged in water and one with attached porcine muscle tissue. Three different tissue depths were selected based on CT scans of 30 human pelves. The ultrasound pointer allowed for registration of virtually any point on the pelvis. This method of surface matching could be successfully integrated into CAS of the pelvis.
Resumo:
The use of glasses doped with PbS nanocrystals as intracavity saturable absorbers for passive Q-switching and mode locking of c-cut Nd:Gd0.7Y0.3VO4, Nd:YVO4, and Nd:GdVO4 lasers is investigated. Q-switching yields pulses as short as 35 ns with an average output power of 435 mW at a repetition rate of 6–12 kHz at a pump power of 5–6 W. Mode locking through a combination of PbS nanocrystals and a Kerr lens results in 1.4 ps long pulses with an average output power of 255 mW at a repetition rate of 100 MHz.