86 resultados para Mikrotubuli, Cytoskelett, gamma-Tubulin, Zellteilung
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Endometriosis is a significant gynecologic condition that can cause both pain and infertility and affects up to 15% of women during their reproductive years. In peritoneal endometriotic lesions, the expression of peroxisome proliferation-activated receptor gamma, a nuclear receptor with antiinflammatory and neuroprotective roles, is positively correlated with the pain reported by patients.
Resumo:
Exercise induces a pleiotropic adaptive response in skeletal muscle, largely through peroxisome proliferator-activated receptor coactivator 1 (PGC-1 ). PGC-1 enhances lipid oxidation and thereby provides energy for sustained muscle contraction. Its potential implication in promoting muscle refueling remains unresolved, however. Here, we investigated a possible role of elevated PGC-1 levels in skeletal muscle lipogenesis in vivo and the molecular mechanisms that underlie PGC-1 -mediated de novo lipogenesis. To this end, we studied transgenic mice with physiological overexpression of PGC-1 and human muscle biopsies pre- and post-exercise. We demonstrate that PGC-1 enhances lipogenesis in skeletal muscle through liver X receptor -dependent activation of the fatty acid synthase (FAS) promoter and by increasing FAS activity. Using chromatin immunoprecipitation, we establish a direct interaction between PGC-1 and the liver X receptor-responsive element in the FAS promoter. Moreover, we show for the first time that increased glucose uptake and activation of the pentose phosphate pathway provide substrates for RNA synthesis and cofactors for de novo lipogenesis. Similarly, we observed increased lipogenesis and lipid levels in human muscle biopsies that were obtained post-exercise. Our findings suggest that PGC-1 coordinates lipogenesis, intramyocellular lipid accumulation, and substrate oxidation in exercised skeletal muscle in vivo.
Resumo:
Pentraxin 3 (PTX3) is a soluble pattern recognition molecule playing a nonredundant role in resistance against Aspergillus fumigatus. The present study was designed to investigate the molecular pathways involved in the opsonic activity of PTX3. The PTX3 N-terminal domain was responsible for conidia recognition, but the full-length molecule was necessary for opsonic activity. The PTX3-dependent pathway of enhanced neutrophil phagocytic activity involved complement activation via the alternative pathway; Fc receptor (Fc R) IIA/CD32 recognition of PTX3-sensitized conidia and complement receptor 3 (CR3) activation; and CR3 and CD32 localization to the phagocytic cup. Gene targeted mice (ptx3, FcR common chain, C3, C1q) validated the in vivo relevance of the pathway. In particular, the protective activity of exogenous PTX3 against A fumigatus was abolished in FcR common chain-deficient mice. Thus, the opsonic and antifungal activity of PTX3 is at the crossroad between complement, complement receptor 3-, and Fc R-mediated recognition. Because short pentraxins (eg, C-reactive protein) interact with complement and Fc R, the present results may have general significance for the mode of action of these components of the humoral arm of innate immunity.
Resumo:
The tubulin-binding mode of C3- and C15-modified analogues of epothilone A (Epo A) was determined by NMR spectroscopy and computational methods and compared with the existing structural models of tubulin-bound natural Epo A. Only minor differences were observed in the conformation of the macrocycle between Epo A and the C3-modified analogues investigated. In particular, 3-deoxy- (compound 2) and 3-deoxy-2,3-didehydro-Epo A (3) were found to adopt similar conformations in the tubulin-binding cleft as Epo A, thus indicating that the 3-OH group is not essential for epothilones to assume their bioactive conformation. None of the available models of the tubulin-epothilone complex is able to fully recapitulate the differences in tubulin-polymerizing activity and microtubule-binding affinity between C20-modified epothilones 6 (C20-propyl), 7 (C20-butyl), and 8 (C20-hydroxypropyl). Based on the results of transferred NOE experiments in the presence of tubulin, the isomeric C15 quinoline-based Epo B analogues 4 and 5 show very similar orientations of the side chain, irrespective of the position of the nitrogen atom in the quinoline ring. The quinoline side chain stacks on the imidazole moiety of beta-His227 with equal efficiency in both cases, thus suggesting that the aromatic side chain moiety in epothilones contributes to tubulin binding through strong van der Waals interactions with the protein rather than hydrogen bonding involving the heteroaromatic nitrogen atom. These conclusions are in line with existing tubulin polymerization and microtubule-binding data for 4, 5, and Epo B.
Resumo:
An efficient new synthesis has been elaborated for non-natural (-)-dactylolide ((-)-2) and its 13-desmethylene analogue 4, employing a HWE-based macrocyclization approach with beta-keto-phosphonate/aldehyde 19 and the respective 13-desmethylene derivative as the key intermediates. Both (-)-2 and 4 as well as the corresponding C20 alcohols inhibit human cancer cell proliferation with IC(50) values in the sub-micromolar range and induce the polymerization of tubulin in vitro.
Resumo:
A prospective, randomized, placebo-controlled study was conducted in a baboon model to determine if a thiazolidinedione agonist of peroxisome proliferator-activated receptor-gamma, pioglitazone, can impede the development of endometriosis. Endometriosis was induced using laparoscopic, intrapelvic injection of eutopic menstrual endometrium, previously incubated with placebo or pioglitazone for 30 min, in 12 female baboons with a normal pelvis that had undergone at least one menstrual cycle since the time of captivity. At this point, the 12 baboons were randomized into two groups and treated from the day of induction. They received either PBS tablets (n = 6, placebo control, placebo tablets once a day by mouth) or pioglitazone (n = 6, test drug, 7.5 mg by mouth each day). A second and final laparoscopy was performed in the baboons to record the extent of endometriotic lesions between 24 and 42 d after induction (no difference in length of treatment between the two groups, P = 0.38). A videolaparoscopy was performed to document the number and surface area of endometriotic lesions. The surface area and volume of endometriotic lesions were significantly lower in pioglitazone treated baboons than the placebo group (surface area, 48.6 vs. 159.0 mm(2), respectively, P = 0.049; vol, 23.7 vs. 131.8 mm(3), respectively, P = 0.041). The surface area (3.5 vs. 17.8 mm(2), P = 0.017, pioglizatone vs. placebo) and overall number (1.5 vs. 9.5, P = 0.007, pioglizatone vs. placebo) of red lesions were lower in the pioglitazone group. A peroxisome proliferator-activated receptor-gamma ligand, pioglitazone, effectively reduced the initiation of endometriotic disease in the baboon endometriosis model. Using this animal model, we have shown that thiazolidinedione is a promising drug for preventive treatment of endometriosis.
Resumo:
To assess the effect of thiazolidinediones on the regulation of inflammatory cytokines related to endometriosis in endometrial tissue and determine whether these effects occur via activation of the peroxisome proliferating activating receptor gamma (PPAR)-γ.
Resumo:
Schizophrenia has been postulated to involve impaired neuronal cooperation in large-scale neural networks, including cortico-cortical circuitry. Alterations in gamma band oscillations have attracted a great deal of interest as they appear to represent a pathophysiological process of cortical dysfunction in schizophrenia. Gamma band oscillations reflect local cortical activities, and the synchronization of these activities among spatially distributed cortical areas has been suggested to play a central role in the formation of networks. To assess global coordination across spatially distributed brain regions, Omega complexity (OC) in multichannel EEG was proposed. Using OC, we investigated global coordination of resting-state EEG activities in both gamma (30–50 Hz) and below-gamma (1.5–30 Hz) bands in drug-naïve patients with schizophrenia and investigated the effects of neuroleptic treatment. We found that gamma band OC was significantly higher in drug-naïve patients with schizophrenia compared to control subjects and that a right frontal electrode (F3) contributed significantly to the higher OC. After neuroleptic treatment, reductions in the contribution of frontal electrodes to global OC in both bands correlated with the improvement of schizophrenia symptomatology. The present study suggests that frontal brain processes in schizophrenia were less coordinated with activity in the remaining brain. In addition, beneficial effects of neuroleptic treatment were accompanied by improvement of brain coordination predominantly due to changes in frontal regions. Our study provides new evidence of improper intrinsic brain integration in schizophrenia by investigating the resting-state gamma band activity.
Resumo:
Radiation metabolomics has aided in the identification of a number of biomarkers in cells and mice by ultra-performance liquid chromatography-coupled time-of-flight mass spectrometry (UPLC-ESI-QTOFMS) and in rats by gas chromatography-coupled mass spectrometry (GCMS). These markers have been shown to be both dose- and time-dependent. Here UPLC-ESI-QTOFMS was used to analyze rat urine samples taken from 12 rats over 7 days; they were either sham-irradiated or γ-irradiated with 3 Gy after 4 days of metabolic cage acclimatization. Using multivariate data analysis, nine urinary biomarkers of γ radiation in rats were identified, including a novel mammalian metabolite, N-acetyltaurine. These upregulated urinary biomarkers were confirmed through tandem mass spectrometry and comparisons with authentic standards. They include thymidine, 2'-deoxyuridine, 2'deoxyxanthosine, N(1)-acetylspermidine, N-acetylglucosamine/galactosamine-6-sulfate, N-acetyltaurine, N-hexanoylglycine, taurine and, tentatively, isethionic acid. Of these metabolites, 2'-deoxyuridine and thymidine were previously identified in the rat by GCMS (observed as uridine and thymine) and in the mouse by UPLC-ESI-QTOFMS. 2'Deoxyxanthosine, taurine and N-hexanoylglycine were also seen in the mouse by UPLC-ESI-QTOFMS. These are now unequivocal cross-species biomarkers for ionizing radiation exposure. Downregulated biomarkers were shown to be related to food deprivation and starvation mechanisms. The UPLC-ESI-QTOFMS approach has aided in the advance for finding common biomarkers of ionizing radiation exposure.
Resumo:
The aim of this work was to use metabolomics to evaluate sebum as a source of biomarkers for gamma-radiation exposure in the rat, and potentially in man. Proof of concept of radiation metabolomics was previously demonstrated in both mouse and rat urine, from the radiation dose- and time-dependent excretion of a set of urinary biomarkers.