8 resultados para Microvessel density
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. Kaposi-Novak P, Lee JS, Gomez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS. Identification of specific gene expression signatures characteristic of oncogenic pathways is an important step toward molecular classification of human malignancies. Aberrant activation of the Met signaling pathway is frequently associated with tumour progression and metastasis. In this study, we defined the Met-dependent gene expression signature using global gene expression profiling of WT and Met-deficient primary mouse hepatocytes. Newly identified transcriptional targets of the Met pathway included genes involved in the regulation of oxidative stress responses as well as cell motility, cytoskeletal organization, and angiogenesis. To assess the importance of a Met-regulated gene expression signature, a comparative functional genomic approach was applied to 242 human hepatocellular carcinomas (HCCs) and 7 metastatic liver lesions. Cluster analysis revealed that a subset of human HCCs and all liver metastases shared the Met-induced expression signature. Furthermore, the presence of the Met signature showed significant correlation with increased vascular invasion rate and microvessel density as well as with decreased mean survival time of HCC patients. We conclude that the genetically defined gene expression signatures in combination with comparative functional genomics constitute an attractive paradigm for defining both the function of oncogenic pathways and the clinically relevant subgroups of human cancers. [Abstract reproduced by permission of J Clin Invest 2006;116:1582-1595].
Resumo:
BACKGROUND: The inhibition of angiogenesis is a promising strategy for the treatment of malignant primary and secondary tumors in addition to established therapies such as surgery, chemotherapy, and radiation. There is strong experimental evidence in primary tumors that Cyclooxygenase-2 (Cox-2) inhibition is a potent mechanism to reduce angiogenesis. For bone metastases which occur in up to 85% of the most frequent malignant primary tumors, the effects of Cox-2 inhibition on angiogenesis and tumor growth remain still unclear. Therefore, the aim of this study was to investigate the effects of Celecoxib, a selective Cox-2 inhibitor, on angiogenesis, microcirculation and growth of secondary bone tumors. METHODS: In 10 male severe combined immunodeficient (SCID) mice, pieces of A549 lung carcinomas were implanted into a newly developed cranial window preparation where the calvaria serves as the site for orthotopic implantation of the tumors. From day 8 after tumor implantation, five animals (Celecoxib) were treated daily with Celecoxib (30 mg/kg body weight, s.c.), and five animals (Control) with the equivalent amount of the CMC-based vehicle. Angiogenesis, microcirculation, and growth of A549 tumors were analyzed by means of intravital microscopy. Apoptosis was quantified using the TUNEL assay. RESULTS: Treatment with Celecoxib reduced both microvessel density and tumor growth. TUNEL reaction showed an increase in apoptotic cell death of tumor cells after treatment with Celecoxib as compared to Controls. CONCLUSION: Celecoxib is a potent inhibitor of tumor growth of secondary bone tumors in vivo which can be explained by its anti-angiogenic and pro-apoptotic effects. The results indicate that a combination of established therapy regimes with Cox-2 inhibition represents a possible application for the treatment of bone metastases.
Resumo:
BACKGROUND/AIMS: Hepatocellular carcinoma (HCC) is amenable to only few treatments. Inhibitors of the kinase mTOR are a new class of immunosuppressors already in use after liver transplantation. Their antiproliferative and antiangiogenic properties suggest that these drugs could be considered to treat HCC. We investigated the antitumoral effects of mTOR inhibition in a HCC model. METHODS: Hepatoma cells were implanted into livers of syngeneic rats. Animals were treated with the mTOR inhibitor sirolimus for 4 weeks. Tumor growth was monitored by MR imaging. Antiangiogenic effects were assessed in vivo by microvessel density and corrosion casts and in vitro by cell proliferation, tube formation and aortic ring assays. RESULTS: Treated rats had significantly longer survival and developed smaller tumors, fewer extrahepatic metastases and less ascites than controls. Sirolimus decreased intratumoral microvessel density resulting in extensive necrosis. Endothelial cell proliferation was inhibited at lower drug concentrations than hepatoma cells. Tube formation and vascular sprouting of aortic rings were significantly impaired by mTOR inhibition. Casts revealed that in tumors treated with sirolimus vascular sprouting was absent, whereas intussusception was observed. CONCLUSIONS: mTOR inhibition significantly reduces HCC growth and improves survival primarily via antiangiogenic effects. Inhibitors of mTOR may have a role in HCC treatment.
Resumo:
In many human carcinomas, expression of the lymphangiogenic factor vascular endothelial growth factor-D (VEGF-D) correlates with up-regulated lymphangiogenesis and regional lymph node metastasis. Here, we have used the Rip1Tag2 transgenic mouse model of pancreatic beta-cell carcinogenesis to investigate the functional role of VEGF-D in the induction of lymphangiogenesis and tumor progression. Expression of VEGF-D in beta cells of single-transgenic Rip1VEGF-D mice resulted in the formation of peri-insular lymphatic lacunae, often containing leukocyte accumulations and blood hemorrhages. When these mice were crossed to Rip1Tag2 mice, VEGF-D-expressing tumors also exhibited peritumoral lymphangiogenesis with lymphocyte accumulations and hemorrhages, and they frequently developed lymph node and lung metastases. Notably, tumor outgrowth and blood microvessel density were significantly reduced in VEGF-D-expressing tumors. Our results demonstrate that VEGF-D induces lymphangiogenesis, promotes metastasis to lymph nodes and lungs, and yet represses hemangiogenesis and tumor outgrowth. Because a comparable transgenic expression of vascular endothelial growth factor-C (VEGF-C) in Rip1Tag2 has been shown previously to provoke lymphangiogenesis and lymph node metastasis in the absence of any distant metastasis, leukocyte infiltration, or angiogenesis-suppressing effects, these results reveal further functional differences between VEGF-D and VEGF-C.
Resumo:
BACKGROUND/AIMS: Hepatocellular carcinoma (HCC) is resistant to chemotherapy. We reported that sirolimus, an mTOR inhibitor, has antiangiogenic properties in HCC. Since antiangiogenic therapy may enhance chemotherapy effects, we tested the antitumorigenic properties of sirolimus combined with doxorubicin in experimental HCC. METHODS: Morris Hepatoma (MH) cells were implanted into livers of syngeneic rats. Animals were assigned to sirolimus, pegylated liposomal doxorubicin, both combined or control groups. Tumoral growth was followed by MRI. Antiangiogenic effects were assessed by CD31 immunostaining and capillary tube formation assays. Cell proliferation was monitored in vitro by thymidine incorporation. Expression of p21 and phosphorylated MAPKAP kinase-2 was quantified by immunoblotting. RESULTS: Animals treated with the combination developed smaller tumors with decreased tumor microvessel density compared to animals that received monotherapies. In vitro, inhibition of mTOR further impaired capillary formation in the presence of doxorubicin. Doxorubicin reduced endothelial cell proliferation; inhibition of mTOR accentuated this effect. Doxorubicin stimulated p21 expression and the phosphorylation of MAPKAP kinase-2 in endothelial cells. Addition of mTOR inhibitor down-regulated p21, but did not decrease MAPKAP kinase-2 phosphorylation. CONCLUSIONS: Sirolimus has additive antitumoral and antiangiogenic effects when administered with doxorubicin. These findings offer a rationale for combining mTOR inhibitors with chemotherapy in HCC treatment.
Resumo:
BACKGROUND AND AIMS: Well-differentiated neuro-endocrine ileal carcinoids are composed of serotonin-producing enterochromaffin (EC) cells. Life expectancy is determined by metastatic spread to the liver because medical treatment options are still very limited. Selective inhibition of angiogenesis or lymphangiogenesis might prevent tumour growth and metastatic spread. We examined the role of the vascular endothelial growth factors (VEGFs) A, B, C, D, and their receptors (VEGFRs) 1, 2, 3 in angiogenesis and lymphangiogenesis of ileal EC cell carcinoids with and without liver metastases. METHODS: The expression of various VEGFs and VEGFRs was determined by quantitative real-time RT-PCR in healthy mucosa, primary tumour, lymph node metastases and liver metastases of 25 patients with ileal EC cell carcinoids. Microvessel density (MVD) was determined by CD-31 staining in primary tumours and lymphatic vessel density (LVD) by LYVE-1 staining. VEGF expression levels, MVD, LVD, and patients' survival time were correlated using logistic regression and Kaplan-Meier survival analysis. RESULTS: VEGF-A was highly expressed with no difference between normal mucosa and tumours. VEGF-B and -D as well as VEGFR-1 and -2 expression levels were significantly increased in the tumours when compared to normal mucosa. Patients with liver metastasis, however, had a significantly lower expression of the factors A, B, and C and the receptors 2 and 3. MVD in primary tumours positively correlated with the expression of VEGF ligands and their receptors, except for VEGF-D. LVD did not correlate with any VEGF ligand or receptor. Interestingly, low expression levels of VEGF-B were associated with poor survival. CONCLUSION: Patients with more aggressive metastatic spreading had relatively decreased expression levels of VEGF ligands and receptors. Thus, anti-angiogenic therapy may not be a suitable target in metastatic ileal EC cell carcinoids.
Resumo:
BACKGROUND Neuroendocrine tumors are well vascularized and express specific cell surface markers, such as somatostatin receptors and the glucagon-like peptide-1 receptor (GLP-1R). Using the Rip1Tag2 transgenic mouse model of pancreatic neuroendocrine tumors (pNET), we have investigated the potential benefit of a combination of anti-angiogenic treatment with targeted internal radiotherapy. METHODS [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, a radiopeptide that selectively binds to GLP-1R expressed on insulinoma and other neuroendocrine tumor cells, was co-administered with oral vatalanib (an inhibitor of vascular endothelial growth factor receptors (VEGFR)) or imatinib (a c-kit/PDGFR inhibitor). The control groups included single-agent kinase inhibitor treatments and [Lys40(Ahx-DTPA-natIn)NH2]-exendin-4 monotherapy. For biodistribution, Rip1Tag2 mice were pre-treated with oral vatalanib or imatinib for 0, 3, 5, or 7 days at a dose of 100 mg/kg. Subsequently, [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 was administered i.v., and the biodistribution was assessed after 4 h. For therapy, the mice were injected with 1.1 MBq [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and treated with vatalanib or imatinib 100 mg/kg orally for another 7 days. Tumor volume, tumor cell apoptosis and proliferation, and microvessel density were quantified. RESULTS Combination of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and vatalanib was significantly more effective than single treatments (p < 0.05) and reduced the tumor volume by 97% in the absence of organ damage. The pre-treatment of mice with vatalanib led to a reduction in the tumor uptake of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, indicating that concomitant administration of vatalanib and the radiopeptide was the best approach. Imatinib did not show a synergistic effect with [Lys40(Ahx-DTPA-111In)NH2]-exendin-4. CONCLUSION The combination of 1.1 MBq of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 with 100 mg/kg vatalanib had the same effect on a neuroendocrine tumor as the injection of 28 MBq of the radiopeptide alone but without any apparent side effects, such as radiation damage of the kidneys.
Resumo:
Deregulated expression of the MET receptor tyrosine kinase has been reported in up to 50% of patients with hepatocellular carcinoma, the most abundant form of liver cancers, and is associated with decreased survival. Consequently, MET is considered as a molecular target in this malignancy, whose progression is highly dependent on extensive angiogenesis. Here we studied the impact of MET small molecule inhibitors on angiogenesis-associated parameters and growth of xenograft liver models consisting of cells expressing MET-mutated variants M1268T and Y1248H, which exhibit constitutive kinase activity. We demonstrate that MET mutations expression is associated with significantly increased production of vascular endothelial growth factor, which is blocked by MET targeting only in cells expressing the M1268T inhibitor-sensitive but not in the Y1248H inhibitor-resistant variant. Decrease in vascular endothelial growth factor production is also associated with reduction of tyrosine phopshorylation of the vascular endothelial growth factor receptor 2 expressed on primary liver sinusoidal endothelial cells and with inhibition of vessel formation. Furthermore, MET inhibition demonstrated an efficient anti-tumor activity and considerable reduction in microvessel density only against the M1268T-derived intrahepatic tumors. Collectively, our data support the role of targeting MET-associated angiogenesis as a major biological determinant for liver tumor growth control.