2 resultados para Microstructure Characterization

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES To investigate the composition and the microstructural and mechanical characterization of three different types of lingual brackets. MATERIALS AND METHODS Incognito™ (3M Unitek), In-Ovation L (DENTSPLY GAC) and STb™ (Light Lingual System, ORMCO) lingual brackets were studied under the scanning electron microscope employing backscattered electron imaging and their elemental composition was analysed by energy-dispersive X-ray microanalysis. Additionally, Vickers hardness was assessed using a universal hardness-testing machine, and the indentation modulus was measured according to instrumented indentation test. Two-way analysis of variance was conducted employing bracket type and location (base and wing) as discriminating variable. Significant differences among groups were allocated by post hoc Student-Newman-Keuls multiple comparison analysis at 95% level of significance. RESULTS Three different phases were identified for Incognito and In-Ovation L bracket based on mean atomic number contrast. On the contrary, STb did not show mean atomic contrast areas and thus it is recognized as a single phase. Incognito is a one-piece bracket with the same structure in wing and base regions. Incognito consists mainly of noble metals while In-Ovation L and STb show similar formulations of ferrous alloys in wing and base regions. No significant differences were found between ferrous brackets in hardness and modulus values, but there were significant differences between wing and base regions. Incognito illustrated intermediate values with significant differences from base and wing values of ferrous brackets. CONCLUSIONS/IMPLICATIONS Significant differences exist in microstructure, elemental composition, and mechanical properties among the brackets tested; these might have a series of clinical implications during mechanotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital light, fluorescence and electron microscopy in combination with wavelength-dispersive spectroscopy were used to visualize individual polymers, air voids, cement phases and filler minerals in a polymer-modified cementitious tile adhesive. In order to investigate the evolution and processes involved in formation of the mortar microstructure, quantifications of the phase distribution in the mortar were performed including phase-specific imaging and digital image analysis. The required sample preparation techniques and imaging related topics are discussed. As a form of case study, the different techniques were applied to obtain a quantitative characterization of a specific mortar mixture. The results indicate that the mortar fractionates during different stages ranging from the early fresh mortar until the final hardened mortar stage. This induces process-dependent enrichments of the phases at specific locations in the mortar. The approach presented provides important information for a comprehensive understanding of the functionality of polymer-modified mortars.